

# Journal of Tropical Pharmacy and Chemistry

Journal homepage: https://jtpc.farmasi.unmul.ac.id

# Antimalarial Activity of Furoquinoline Alkaloids from the Leaves of *Melicope moluccana*

# Ryan Ayub Wahjoedi, Ratih Dewi Saputri, Tjitjik Srie Tjahjandarie, Mulyadi Tanjung\*

Natural Products Chemistry Research Group, Organic Chemistry Division, Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia \*E-mail: <u>mulyadi-t@fst.unair.ac.id</u>

# Abstract

Two furoquinoline alkaloids, leptanoine C (1) and haplopine-3,3'-dimethylallyl ether (2) were isolated from the leaves of *Melicope moluccana*. The chemical structure of both compounds was determined based on spectroscopic data, including UV, IR, HR-ESI-MS, 1D, and 2D NMR spectral data. The antimalarial activity of compounds 1-2 against *Plasmodium falciparum* 3D7 showing their  $IC_{50}$  values are 0.18 ppm and 2.28 µg/mL, respectively.

Keywords: Melicope moluccana., alkaloid, leptanoine C, haplopine-3,3'-dimethylallyl ether, antimalarial

Accepted: 11 September 2020

DOI: <u>https://doi.org/10.25026/jtpc.v5i2.260</u>

# Introduction

*Melicope* is a genus of the *Rutaceae* family, which consists of 230 species. *Melicope* plants are spread in tropical and subtropical regions. *Melicope* plants are often used by the community in traditional medicine, such as fever and high blood pressure [1]. The utilization of this plant is undoubtedly associated with secondary metabolites. Based on literature studies, secondary metabolites found in *Melicope* plants include alkaloids, coumarins, flavonoids, benzopirans, and terpenoids [2-7]. Recently, the *Plasmodium*  parasites, showing resistance to malaria drugs such as chloroquine and artemisinin [8]. *Melicope moluccana* is one species of the family Rutaceae and is endemic in the Maluku Islands with the name 'Ki Sampang.' The decoction of the leaves of *M. moluccana* is used by the people of Maluku for the treatment of malaria [6]. This study aims to isolate the alkaloid compounds contained in *M. moluccana* leaves and determine the antimalarial activity against *Plasmodium falciparum* 3D7. Two furoquinolines, leptanoin C (1) and 7-O-isoprenyl- $\gamma$ -fagarin (2), were isolated from the leaves of *M.*  *moluccana*. The antimalarial activity against *Plasmodium falciparum* 3D7 also reported.

# Experimental

### **General Prosedure**

Kieselgel 60 GF<sub>254</sub> TLC Plates 0.25 mm (Merck) for thin-layer chromatography (TLC). Silica gel 60  $GF_{254}$  for vacuum liquid chromatography (VLC) and compressed column chromatography, and 60 PF<sub>254</sub> silica gel for radial chromatography purposes. The UV spectrum was measured with a Shimadzu 1800 UV-Vis spectrophotometer. The IR spectrum was recorded with the Perkin Elmer IR spectrophotometer. The mass spectrum was measured with the ESI-TOF (LPR XE Waters) spectrometer (Electro Spray Ionization-Time of Flight), as well as the <sup>1</sup>H-NMR Spectrum and <sup>13</sup>C-NMR determined by NMR JEOL JICA 400 spectrometers operating at 400 MHz (<sup>1</sup>H-NMR) and 100 MHz (<sup>13</sup>C-NMR). Determination of antimalarial activity using the Trager and Jensen method.

# **Plant Material**

The fresh leaves of *M. moluccana* was collected in Jun 2016 in the Conservation Area, District Weda, Central Halmahera District, North Maluku Province, Indonesia [6]. Identification of *M. moluccana* was determined at Herbarium Bogoriense, Botanical Garden Biology, Bogor, Indonesia. The voucher specimen (CP 20160624) was deposited at Herbarium Bogoriense.

#### **Extraction and Isolation**

Extraction of the leaves of M. moluccana (3.0 kg) with methanol at room temperature. The methanol extract obtained was evaporated using a rotary vacuum evaporator and the thick methanol extract was obtained. The thick methanol extract was added with 5% sulfuric acid (pH 3-4) and then partitioned successively with n-hexane and ethyl acetate. The acid phase is then added with ammonia (pH 8-9) and partitioned with ethyl acetate. Ethyl acetate extract containing alkaloid compounds was washed with water and evaporated with a rotary vacuum evaporator to produce a crude extract of alkaloids. VLC fractionated the crude alkaloid extract (12.5 g)with a mixture of n-hexane: ethyl acetate (9:1. 8:2,

and 7:3) to get three fractions, A-C. Separation of fraction C (469.8 mg) by compressed column chromatography with n-hexane: ethyl acetate (9: 1, 8: 2, and 7: 3) produces three subfractions of C1, C2, and C3. Purification and purification of C1 subfraction (124 mg) by radial chromato-graphy using a mixture of n-hexane: ethyl acetate (9:1. 8:2, and 7:3) eluents produced compound **2** (8.6 mg). Purification and purification of C2 subfraction (153.8 mg) by radial chromatography using a mixture of n-hexane: ethyl acetate (9: 1, 8: 2, and 7: 3) eluents produced compound **1** (11.2 mg).

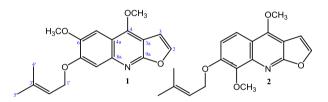



Figure 1. Furoquinoline alkaloids of 1-2

#### **Antimalarial Activity**

The antimalarial activity test of the two isolated alkaloids was carried out in vitro using the Trager and Jensen method of *P. falciparum* strain 3D7, which was sensitive to chloroquine in a 96-microwell plate containing isolated compounds in various concentrations (100, 50, 10, 1, 0.1  $\mu$ g/mL) and incubated at 37 °C for 48 hours. Inhibition of test compounds against the growth of parasitemia was observed with the aid of a microscope [8-9].

#### Results and Discussion

Phytochemical study on the ethyl acetate extract containing alkaloid compounds yielded two furoquinoline alkaloids, namely leptanoine C (1) and haplopine-3,3'-dimethylallyl ether (2) were isolated from the leaves of of M. *moluccana*.

Leptanoine C (1) was isolated as a light yellow solid. The mass spectrum of 1, showing the positive quasimolecular ion peak  $[M+H]^+$  at m/z 314.1407 which is in accordance with the molecular formula  $C_{18}H_{20}NO_4$  (calculation

 $[M+H]^+$  m/z 314,1392) based on the HRESIMS spectrum. The UV spectrum of 1 in methanol shows the maximum absorption at  $\lambda_{max}$  nm (log  $\varepsilon$ ): 243 (4.5), 269 (3.6), 323 (3.8), and 334 (3.65), which are characteristic for furoquinoline chromophore [10]. The IR spectrum of 1, showing the absorption band at v (cm<sup>-1</sup>): 1622-1587 (C = C aromatic) and 1236 (C-O-C ether). The proton of 1 consists of the furan ring, quinoline moiety, Oisoprenyl, and methoxy in the <sup>1</sup>H NMR. The resonances of the furan ring consist of a pair of the vinylic proton at  $\delta_{\rm H}$  7.55 (1H, d, J = 2.8 Hz, H-2), and  $\delta_{\rm H}$  7.02 (1H, d, J = 2.8 Hz, H-3). Two aromatic protons of quinoline moiety exhibited at  $\delta_{\rm H}$  7.48 (1H, s Hz, H-5), and  $\delta_{\rm H}$  7.33 (1H, s, H-8). The resonances of O-isoprenyl exhibited the presence of a vinyl proton at  $\delta_{\rm H}$  5.59 (1H, tm, J =6.7 Hz, H-2<sup>'</sup>), an oxy-methylene proton [ $\delta_{\rm H}$  4.73  $(2H, d, J = 6.6 \text{ Hz}, \text{H-1}^{\prime})$ , and two methyl proton  $[\delta_{\rm H} 1.79 \ (3{\rm H}, {\rm s}, {\rm H}-4^{\prime}), 1.77 \ (3{\rm H}, {\rm s}, {\rm H}-5^{\prime})]$ . The <sup>1</sup>H NMR of **1** also showed two methoxy protons  $[\delta_{\rm H} 4.42 \text{ (3H, s, 4-OCH}_3), \delta_{\rm H} 4.00 \text{ (3H, s, 6-}$  $OCH_3$ )]. The <sup>13</sup>C-NMR spectra of **1** consisted of 18 carbons distributed over eight quaternary carbon atoms ( $\delta_{\rm C}$  163.0; 155.5; 151.8; 148.0; 142.5; 138.3; 112.8 and 102, 0), five methine carbons ( $\delta_{C}$  142.3; 119.2; 107.6; 104.6; and 101.1), one methylene carbon ( $\delta_{\rm C}$  65.7) and four methyl carbons ( $\delta_{\rm C}$  58.8; 56.0; 25.9 and 18.3). The placement of two methoxy and O-isoprenyl groups in the furoquinoline skeleton was determined based on the analysis of HMOC and HMBC spectra. Analysis of the HMBC spectrum, the furan ring proton signal at  $\delta_H$  7.55 (H-2) showed correlation with the furoquinoline skeleton at C-3  $(\delta_{C} 104.6)$ , C-3a  $(\delta_{C} 102.0)$ , and C-9a  $(\delta_{C} 163.0)$ . The other furan ring proton signals at  $\delta_{\rm H}$  7.02 (H-3) showed a correlation with C-2 ( $\delta_{\rm C}$  142.3), C-3a, and C-9a. Two aromatic singlet signals at  $\delta_H$  7.48 (H-5), and  $\delta_{\rm H}$  7.33 (H-8), showing two two methoxy and O-isoprenyl groups bound to C-4, C-5, and C-8 in the aromatic nucleus of the furoquinoline skeleton. The resonance of aromatic at  $\delta_{\rm H}$  7.48 (H-5) correlated to C-4 ( $\delta_{\rm C}$  104.6), C-4a  $(\delta_{C} 112.8)$ , C-6  $(\delta_{C} 148.0)$ , C-7  $(\delta_{C} 151.8)$ , and C-8a ( $\delta_{\rm C}$  142.6). The resonance of methoxy at  $\delta_{\rm H}$ 4.42 (4-OCH<sub>3</sub>) correlated to C-4. The other

methoxy at  $\delta_{\rm H} \delta_{\rm H} 4.00$  (6-OCH<sub>3</sub>) correlated to C-6. The resonance of oxy-methylene at  $\delta_{\rm H}$  4.73 (H-1') correlated to C-7, C-2' ( $\delta_C$  119.2), and C-3' ( $\delta_C$ 138.3). The correlation of two methoxy and oxymethlene signals with a carbon signal showed bound methoxy at C-4, C-5, and O-isoprenyl bound at C-7. The HRESIMS, 1D, and 2D NMR spectral data; the structure of 1 was identified as 4,6-dimethoxy-7-0 -isoprenylquinoline. The of 4,6-dimethoxy-7-0 structure isoprenylquinoline as leptanoin C [11]. Based on HMBC correlations, supporting the structure of **2** are shown in Table 1, and Figure 2.

Haplopine-3,3'-dimethylallyl ether (2) was obtained as a yellow solid. The mass spectrum of 2, showing the positive quasimolecular ion peak  $[M+H]^+$  at m/z 314.1403 correspondings to the molecular formula  $C_{18}H_{20}NO_4$ (calculation  $[M+H]^+$  m/z 314,1392) based on the HRESIMS spectrum. The UV spectrum ( $\lambda_{max}$  (log  $\epsilon$ ) 250 (4.6), 269 (3.5), 320 (3.70), 333 (3.7) nm, and HRESIMS spectrum very similar to those of 1. The proton of 2 consists of the furan ring [ $\delta_{\rm H}$  7.52 (1H, d, J = 2.8 Hz, H-2)], aromatic of quinoline moiety [ $\delta_{\rm H}$  7.92 (1H, d, J = 9.3 Hz, H-5),  $\delta_{\rm H}$  7.17 (1H, d, J = 9.3 Hz, H-6)], O-isoprenyl [ $\delta_{\rm H}$  5.53 (1H, tm, J = 6.7 Hz, H-2<sup>()</sup>),  $\delta_{\rm H}$  4.72 (2H, d, J = 6.7Hz, H-1<sup>'</sup>),  $\delta_{\rm H}$  1.75 (s, H-4<sup>'</sup>), 1.74 (s, H-5<sup>'</sup>)], and two methoxy protons [ $\delta_{\rm H}$  4.36 (3H, s, 4-OCH<sub>3</sub>),  $\delta_{\rm H}$  4.00 (3H, s, 8-OCH<sub>3</sub>)]. The <sup>13</sup>C-NMR spectra of 2 consisted of 18 carbons very similar to those of 1. The spectrum HMBC, the resonance of aromatic at  $\delta_H$  7.92 (H-5) correlated to C-4 ( $\delta_C$ 157,0), C-7 ( $\delta_{\rm C}$  151.2), and C-8a ( $\delta_{\rm C}$  141.4) The resonance of methoxy at  $\delta_{\rm H}$  4.36 (4-OCH<sub>3</sub>) correlated to C-4. The resonance of oxy-methylene at  $\delta_{\rm H}$  4.72 (H-1') correlated to C-7, C-2' ( $\delta_{\rm C}$ 120.0), and C-3´ ( $\delta_C$  137.8). The correlation of methoxy and oxy-methylene signals with a carbon signal showed bound methoxy at C-4, O-isoprenyl bound at C-7, and also showed the other methoxy attached at C-8. The 1D, and 2D NMR spectral data; the structure of 2 was identified as 4,8dimethoxy-7-O-isoprenylquinoline or know as haplopine-3,3'-dimethyl-allyl ether [12]. Based on HMBC correlations, supporting the structure of **2** are shown in Table 2 and Figure 2.

Antimalarial Activity of Furoquinoline Alkaloids from the Leaves of Melicope moluccana

| No                 | Leptanoine C (1) |                |                         | Leptanoine C [11] in CDCl <sub>3</sub> |                |
|--------------------|------------------|----------------|-------------------------|----------------------------------------|----------------|
|                    | $\delta_{\rm H}$ | δ <sub>C</sub> | HMBC                    | $\delta_{\rm H}$                       | δ <sub>C</sub> |
| 2                  | 7.55 (d, 2.8)    | 142.3          | C-3, C-3a, C-9a         | 7.59 (d, 2.6)                          | 142.8          |
| 3                  | 7.02 (d, 2.8)    | 104.6          | C-2, C-3a, C-9a         | 7.06 (d, 2.6)                          | 104.9          |
| 3a                 | -                | 102.0          | -                       | -                                      | 103.4          |
| 4                  | -                | 155.5          | -                       | -                                      | 156.0          |
| 4a                 | -                | 112.8          | -                       | -                                      | 112.9          |
| 5                  | 7.48(s)          | 101.1          | C-4, C-4a, C-6, C-7, C- | 7.46 (s)                               | 100.5          |
|                    |                  |                | 8a                      |                                        |                |
| 6                  | -                | 148.0          | -                       | -                                      | 148.7          |
| 7                  | -                | 151.8          | -                       | -                                      | 152.8          |
| 8                  | 7.33(s)          | 107.6          | C-4a, C-6, C-7, C-8a    | 7.48(s)                                | 106.8          |
| 8a                 | -                | 142.5          | -                       | -                                      | 139.0          |
| 9a                 | -                | 163.0          | -                       | -                                      | 162.0          |
| 1'                 | 4.73 (d, 6.6)    | 65.7           | C-7, C-2', C-3'         | 4.76 (d, 4.0)                          | 66.2           |
| 2'                 | 5.59 (tm, 6.7)   | 119.2          | C-4', C-5'              | 5.59 (tm, 6.6)                         | 119.2          |
| 3'                 | -                | 138.3          | -                       | -                                      | 138.8          |
| 4'                 | 1.79(s)          | 25.9           | C-2', C-3', C-5'        | 1.80(s)                                | 26.0           |
| 5'                 | 1.77(s)          | 18.3           | C-2', C-3', C-4'        | 1.80 (s)                               | 18.5           |
| 4-OCH <sub>3</sub> | 4.42 (s)         | 58.8           | C-4                     | 4.46 (s)                               | 59.3           |
| 6-OCH <sub>3</sub> | 4.00 (s)         | 56.0           | C-6                     | 4.00 (s)                               | 56.2           |

Table 1. NMR data leptanoine C in CDCl<sub>3</sub>

Table 2. NMR data haplopine-3,3´-dimethyl-allyl ether in CDCl<sub>3</sub>

| No                 | Haplopine-3,3'-dimethyl-allyl ether (2) |                  |                  | Haplopine-3,3'-di | Haplopine-3,3'-dimethyl-allyl ether [12] in DMSO-d6 |  |
|--------------------|-----------------------------------------|------------------|------------------|-------------------|-----------------------------------------------------|--|
|                    | $\delta_{\rm H}$                        | $\delta_{\rm C}$ | HMBC             | $\delta_{\rm H}$  | δ <sub>C</sub>                                      |  |
| 2                  | 7.52 (d, 2.8)                           | 142.8            | C-3, C-3a, C-9a  | 7.80 (d, 2.0)     | 143.3                                               |  |
| 3                  | 6.98 (d, 2.8)                           | 104.5            | C-2, C-3a, C-9a  | 6.75 (d, 2.0)     | 105.0                                               |  |
| 3a                 | -                                       | 101.8            | -                | -                 | 102.3                                               |  |
| 4                  | -                                       | 157.0            | -                | -                 | 157.5                                               |  |
| 4a                 | -                                       | 114.8            | -                | -                 | 115.3                                               |  |
| 5                  | 7.92 (d, 9.3)                           | 117.8            | C-4, C-7, C-8a   | 8.07 (d, 9.0)     | 118.2                                               |  |
| 6                  | 7.17 (d, 9.3)                           | 114.0            | C-4a, C-7, C-8   | 6.95 (d, 9.0)     | 114.7                                               |  |
| 7                  | -                                       | 151.2            | -                | -                 | 151.8                                               |  |
| 8                  | -                                       | 142.6            | -                | -                 | 143.2                                               |  |
| 8a                 | -                                       | 141.4            | -                | -                 | 141.9                                               |  |
| 9a                 | -                                       | 164.1            | -                | -                 | 164.6                                               |  |
| 1'                 | 4.72 (d, 6.7)                           | 66.6             | C-7, C-2', C-3'  | 4.80 (d, 6.6)     | 67.2                                                |  |
| 2'                 | 5.53 (t, 6.7)                           | 120.0            | C-4', C-5'       | 5.57 (t, 6.8)     | 120.5                                               |  |
| 3'                 | -                                       | 137.8            | -                | -                 | 138.2                                               |  |
| 4'                 | 1.75(s)                                 | 25.7             | C-2', C-3', C-5' | 1.98 (s)          | 26.1                                                |  |
| 5'                 | 1.74 (s)                                | 18.1             | C-2', C-3', C-4' | 1.98(s)           | 18.7                                                |  |
| 4-OCH <sub>3</sub> | 4.36 (s)                                | 58.8             | C-4              | 4.47(s)           | 59.3                                                |  |
| 8-OCH <sub>3</sub> | 4.07(s)                                 | 61.4             | C-8              | 4.01(s)           | 61.9                                                |  |

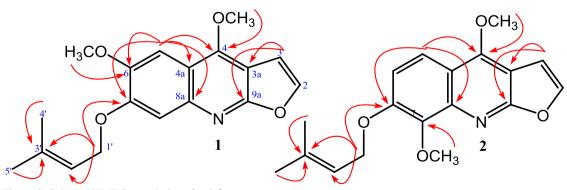



Figure 2. Selected HMBC correlations for 1-2

compounds 1-Antimalarial activity of **2** against *P*. falciparum strain 3D7 showed  $IC_{50}$ values of 2.28 and 0.18 µg/mL, respectively. Chloroquine was used as a positive control, showing the IC<sub>50</sub> values of 1.03  $\mu$ g/mL. Based on antimalarial test data showed that compound 1 was categorized as moderate, while compound 2 was categorized as very active [8]. Both of these compounds, based microscopic alkaloid on observations, showed that both compounds inhibited the growth of schizoids. Thus, both compounds are beneficial for malaria sufferers. Leptanoine C (1) and haplopine-3.3'-dimethyl-allyl ether (2) have potential as an antimalarial. 1 - 2Furthermore. compounds suggested to cytotoxic assay, in vivo assay, preclinic assay for applied as malaria drug development.

#### Conclusion

Two furoquinolines, leptanoine C (1) and haplopine-3,3'-dimethylallyl ether (2) were isolated from the leaves of *Melicope moluccana*. Antimalarial activity of compounds 1-2 against *P. palcifarum*, showing against *Plasmodium falciparum* 3D7 showing their IC<sub>50</sub> values are 0.18 ppm and 2.28  $\mu$ g/mL, respectively.

#### Acknowledgments

We wish to thank to Mr. Ismail Rachman from the Herbarium Bogoriense, Botanical Garden, Bogor, for identifying the species.

#### References

- Nakashima, K., Oyama, M., Ito, T., Witono, J.R., Darnaedi, D., Tanaka, T., Murata, T., Iinuma M., 2011. Melicodenines A and B, novel Diels-Alder type adduct isolated from *Melicope denhamii*, *Tetrahedron. Lett.*, 52, 4694-4696.
- [2] Chen, J.J., Chang, Y.L., Teng, C.M., Su, C.C., Chen, I.S., 2002. Quinoline alkaloids and antiplatelet aggregation constituents from the leaves of *Melicope semecarpifolia*, *Planta Med.*, 68, 790-793.

- [3] Kassim, N.K., Rahmani, M., Ismail, A., Sukari, M.A., Ee, G.C.L., Nasir, N.M., Awang, K., 2013. Antioxidant activity-guided separation of coumarins and lignan from *Melicope glabra* (Rutaceae), *Food. Chem.*, 139, 87-92.
- [4] Kamperdick, C., Van, N.H., Sung, T.V., Adam, G., 1997. Benzopyran from *Melicope ptelefolia* leaves, *Phytochem.*, 45, 1049-1056.
- [5] Nakashima, K.I., Oyama, M., Ito, T., Witono, J.R., Darnaedi, D., Tanaka, T., Murata, J., Linuma, M., 2012. Novel zierane- and guaianetype sesquiterpenes from the root of *Melicope denhamii*, *Chem Biodivers.*, 9, 2195-2202.
- [6] Tanjung, M., Saputri, R.D., Wahjoedi, R.A., Tjahjandarie, T.S., 2017. 4-Methoxy-3-(3methylbut-2-en-1-yl)-7-((3-methylbut-2-en-1yl)oxy) quinolin-2(1H)-one from *Melicope moluccana* T.G. Hartley, *Molbank*, 1-5, <u>https://www.mdpi.com/1422-8599/2017/2/M939</u>.
- [7] Saputri RD, Tjahjandarie TS, Tanjung M., 2019. Two novel coumarins bearing an actophenone derivative from the leaves of *Melicope quercifolia*, *Nat. Prod. Res.* 1-6, <u>https://doi.org./10.1080/14786419.2019.1644634</u>.
- [8] Tanjung, M; Fitriatii, F.F.; Saputri, D.S;. Tjahjandarie, T.S., 2016. Antimalarial and antioxidant of isoprenylated coumarins from the stem bark of *Mesua borneensis* L., *J Biol Active Prod from Nature*. 6, 95-100.
- [9] Tjahjandarie, T.S., Tanjung, M., 2015. Lead compound antimalaria dan antioksidan senyawa alkaloid, flavonoid dan kumarin dari *Limonia* accidisima L., Laporan Akhir Penelitian Unggulan Perguruan Tinggi, Universitas Airlangga. 1-45.
- [10] Saputri, R.D., Tjahjandarie, T.S., Tanjung M., 2019. Alkaloid furokuinolin dan asam sinamat ter-O-geranilasi dari kulit batang *Melicope hookeri* T.G. Hartley, J. Sains dan Kesehatan, 2:1-7.
- [11] Sichaem, J., Jirasirichote, A., Sapasuntikul, K., Khumkratok, S., Sawasde, P., Do, T.M.L., Tippyang S., 2003. New furoquinoline alkaloids from the leaves of *Evodia lepta*, *Fitoterapia.*, 92:270-273.
- [12] Al-Rehaily, A.J., Ahmad, M.S., Muhammad, I., Al-Thukair, A.A., Perzanowski H.P., 2003.
  Furoquinoline alkaloids from *Teclea nobilis*, *Phytochem.*, 64:1405-1411.