

Function in Dementia

# JOURNAL OF TROPICAL PHARMACY AND CHEMISTRY

Journal Homepage: https://jtpc.ff.unmul.ac.id

Volume 9.1

Review Article

# The Impact of Flavonoids from Fruits and Vegetables on Cognitive

Josephine Retno Widayanti<sup>1,4,6,7\*</sup>, Nanny Djaja<sup>2,6,7</sup>, Linawati Hananta<sup>3,6,7</sup>, Jimmy Fransisco Abandita Barus<sup>1,6,7</sup>, Siti Setiati<sup>5</sup>, MI Widiastuti<sup>1,4</sup>

<sup>1</sup>Department of Neurology, <sup>2</sup>Department of Public Health and Nutrition, <sup>3</sup>Department of Pharmacology and Pharmacy, <sup>4</sup>Faculty of Medicine, Universitas Diponegoro, Indonesia, <sup>5</sup>Division of Geriatric Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia, <sup>6</sup>Atma Jaya Teaching & Research Hospital, <sup>7</sup>School of Medicine and Health Sciences,

Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia

\* Email Correspondence: josephine.retno@atmajaya.ac.id

#### **Abstract**

Flavonoids are polyphenolic phytochemicals abundant in fruits and vegetables that have attracted attention for their potential neuroprotective effects. Dementia, marked by progressive cognitive decline, has limited effective treatments, prompting interest in nutritional approaches. This review synthesizes existing preclinical and clinical evidence on flavonoids—particularly anthocyanins, flavanols, flavonols, and isoflavones—and their potential effects on different cognitive domains and dementia subtypes. Mechanistic pathways (antioxidant, anti-inflammatory, neuroplasticity, vascular, gut-brain axis) are discussed, along with factors influencing flavonoid efficacy, methodological limitations, and directions for future research. Overall, the evidence suggests modest but promising cognitive benefits of dietary flavonoids, especially for Alzheimer's disease, though more rigorous human trials are needed. Recommendations for dietary guidance and translational implications are highlighted.

**Keywords**: flavonoids, dementia, cognition, neuroprotection, dietary polyphenols.

Accepted: 22 July 2025 Approved: 19 August 2025 Publication: 1 September 2025

Citation: J.R. Widayanti, N. Djaja, L. Hananta, J. Fransisco, A. Barus, S. Setiati, M. Wiastuti, "The Impact of Flavonoids from Fruits and Vegetables on Cognitive Function in Dementia", JTPC, vol 9, no.1, pp.

**Copyright**: © year, Journal of Tropical Pharmacy and Chemistry (JTPC). Published by Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia. This is an Open Access article under the CC-BY-NC License



# 1. Introduction.

Dementia represents one of the most pressing global health challenges of the 21st century. Characterized by a progressive decline in cognitive function, behavioural disturbances, and loss of independence, dementia currently affects more than 55 million individuals worldwide, with projections rising to 139 million by 2050 (World Health Organization [WHO], 2023). Alzheimer's disease (AD) accounts for approximately 60-70% of cases, followed by vascular dementia, dementia with Lewy bodies, and frontotemporal dementia. Despite decades of research, therapeutic options remain limited. Existing pharmacological treatments—such as cholinesterase inhibitors and NMDA-receptor antagonists—offer only symptomatic relief and do not halt disease progression. As a result, increasing attention has shifted toward preventive strategies grounded in diet, lifestyle, and modulation of neuroinflammation and oxidative stress. Among nutritional interventions, flavonoids—a diverse group of polyphenolic compounds abundant in fruits, vegetables, cocoa, soy products, tea, and red wine—have emerged as promising neuroprotective agents. Flavonoids are secondary plant metabolites and possess a characteristic 15-carbon skeleton consisting of two phenyl rings (A and B) and a heterocyclic ring (C). They are broadly classified into subclasses including flavonols (e.g., quercetin), flavanols (e.g., epicatechin), flavones (e.g., luteolin), anthocyanins (e.g., cyanidin), flavanones (e.g., hesperidin), and isoflavones (e.g., genistein) (Panche et al., 2016). These compounds exhibit biological effects such as antioxidant activity, modulation of cellular signalling pathways, suppression of neuroinflammation, promotion of cerebral blood flow, and enhancement of neuronal survival and synaptic plasticity (Spencer, 2010; Vauzour et al., 2017).

Multiple epidemiological studies have shown that higher dietary intake of flavonoid-rich foods is associated with reduced risk of cognitive decline and dementia (Commenges et al., 2000; Letenneur et al., 2007; Devore et al., 2012). More recently, a cohort study involving over 2,800 older adults found that higher long-term flavonoid intake—particularly anthocyanins and flavonols—was inversely associated with risk of developing Alzheimer's disease (Rajput et al., 2021). Additionally, human interventional trials using blueberries, cocoa flavanols, green tea polyphenols, or soy isoflavones have demonstrated improvements in memory, executive function, and processing speed in older adults or those with mild cognitive impairment (Krikorian et al., 2010; Mastroiacovo et al., 2015; File et al., 2005). However, findings remain inconsistent, largely due to variations in dose, duration, bioavailability, and cognitive testing methodologies.

From a mechanistic perspective, flavonoids may influence the pathogenesis of dementia by targeting multiple molecular pathways. These include: Antioxidant pathways, reducing reactive oxygen species (ROS) and mitochondrial dysfunction, Anti-inflammatory signalling, inhibiting NF- $\kappa$ B activation and microglial cytokine release, Inhibition of amyloid- $\beta$  aggregation and tau hyperphosphorylation, central to Alzheimer's pathology, Enhancement of cerebral blood flow and vascular integrity, key in vascular dementia, Promotion of neurogenesis, synaptic plasticity, and BDNF expression, supporting cognitive resilience, Modulation of the gut–brain axis, influencing neuroinflammation and neurotransmitter synthesis, Despite growing evidence, key questions remain unanswered: Are certain flavonoid subclasses more effective than others in improving cognitive function?. Can flavonoids delay progression or modify pathology in established dementia, or are they only preventive? What doses, durations, and delivery methods are required to achieve clinically relevant effects in the human brain? How do individual factors—such as age, genetics (e.g., APOE  $\epsilon$ 4), microbiome composition, or comorbidities—influence responsiveness to flavonoids?

This review aims to provide a comprehensive, critical evaluation of current scientific evidence regarding the role of flavonoids from fruits and vegetables in cognitive function enhancement and dementia prevention or treatment. Specifically, it will: Summarize flavonoid types, dietary sources, and metabolism. Explain dementia subtypes and their cognitive profiles, examine neurobiological mechanisms of flavonoid action, Review animal and human studies on major flavonoid subclasses, assess cognitive domain-specific effects: memory, attention, executive function, and processing speed, evaluate impacts across dementia types: AD, vascular dementia, Lewy body dementia, and frontotemporal dementia, Journal of Tropical Pharmacy and Chemistry (JTPC) Year 2025, Vol. 9, No. 1

identify factors affecting flavonoid efficacy: dosage, bioavailability, genetics, microbiota. Highlight limitations, research gaps, and directions for future studies. By integrating molecular, clinical, and epidemiological evidence, this review seeks to determine whether dietary flavonoids represent a viable strategy to mitigate cognitive decline and dementia. It also aims to provide recommendations for dietary guidelines, clinical research, and potential therapeutic applications.

#### 2. Result and Discussion

# 2.1. Flavonoids: Classification and Chemical Characteristics

Flavonoids are a large family of polyphenolic compounds synthesized by plants as secondary metabolites. Structurally, they share a basic C6-C3-C6 skeleton composed of two aromatic rings (A and B) connected by a three-carbon heterocyclic ring (C). Differences in hydroxylation, glycosylation, methylation, and conjugation patterns lead to the formation of several subclasses (Panche et al., 2016). The six major flavonoid subclasses relevant to neurocognitive health include:

| Subclass                 | Representative Compounds                               | Food Sources                                                    |
|--------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| Anthocyanins             | Cyanidin, delphinidin, malvidin                        | Blueberries, blackberries, strawberries, purple cabbage, grapes |
| Flavanols (Flavan-3-ols) | Catechin, epicatechin, epigallocatechin gallate (EGCG) | Green tea, cocoa, apples, grapes                                |
| Flavonols                | Quercetin, kaempferol, myricetin                       | Onions, kale, leeks, broccoli, apples                           |
| Flavones                 | Apigenin, luteolin                                     | Parsley, chamomile, celery, peppers                             |
| Flavanones               | Hesperidin, naringenin                                 | Citrus fruits (oranges, lemons, grapefruits)                    |
| Isoflavones              | Genistein, daidzein, glycitein                         | Soybeans, tofu, tempeh, miso                                    |

These subclasses differ not only in chemical configuration but also in solubility, bioavailability, metabolism, and brain-targeting ability, influencing their neuroprotective potential. Human intake of flavonoids primarily comes from fruits, vegetables, teas, legumes, red wine, cocoa, and herb-derived infusions. Estimated daily flavonoid consumption varies significantly across countries: Japan: 50-70 mg/day (high soy intake  $\rightarrow$  isoflavones). Mediterranean countries: 150-350 mg/day (high fruit, vegetable, red wine intake). United States: 200-250 mg/day (berries, apples, tea as primary sources). Indonesia and Southeast Asia: High soy, tea, and tropical fruit-derived flavonoids (Suriastini et al., 2021). Among these, anthocyanins and flavanols are most strongly linked to cognitive benefits in epidemiological research (Devore et al., 2012; Rajput et al., 2021).

# 2.2. Metabolism, Absorption, and the Gut-Brain Axis

Flavonoids are not absorbed in their intact form. They undergo extensive metabolism through the following steps:

- 1. Intestinal digestion: Flavonoid glycosides are hydrolyzed by enzymes (lactase-phlorizin hydrolase,  $\beta$ -glucosidase).
- 2. Phase I and II metabolism in the liver: Methylation, glucuronidation, and sulfation produce conjugates.
- 3. Circulation: Less than 5–10% of ingested flavonoids appear in plasma (Scalbert & Williamson, 2000).
- 4. Gut microbiota fermentation: Produces phenolic acids, often more bioactive and capable of crossing the blood–brain barrier (BBB).
- 5. Blood-brain barrier transport: Small flavonoid metabolites (e.g., protocatechuic acid, ferulic acid) can penetrate the brain via passive diffusion or transporters (Youdim et al., 2004).

Thus, the gut microbiome critically modulates bioavailability and neuroactivity. Individuals with higher levels of Bifidobacterium and Lactobacillus metabolize flavonoids more efficiently, potentially enhancing cognitive outcomes (Czank et al., 2013).

# 2.3. Dementia: Definition and Epidemiological Burden

Dementia is defined as a progressive deterioration of cognitive function beyond normal aging, impairing daily activities. It affects: 55 million people globally (WHO, 2023). 10 million new cases are diagnosed each year. Global cost exceeds USD 1.3 trillion annually. Dementia involves memory loss, impaired reasoning, language problems, disorientation, and behavioral changes. It is strongly associated with aging, oxidative stress, neuroinflammation, vascular dysfunction, mitochondrial impairment, and protein misfolding (amyloid- $\beta$ , tau,  $\alpha$ -synuclein).

| Major Dementia Su | btypes |
|-------------------|--------|
|-------------------|--------|

| Subtype                       | Key Pathology                                                | Primary Cognitive Symptoms                          |
|-------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| Alzheimer's Disease (AD)      | Amyloid-β plaques, tau tangles, synaptic loss                | Memory, learning, orientation deficits              |
| Vascular Dementia (VaD)       | Cerebral infarctions, small vessel disease,<br>hypoperfusion | Processing speed, executive dysfunction             |
| Lewy Body Dementia (LBD)      | $\alpha\mbox{-synuclein}$ accumulation, cholinergic deficits | Fluctuating cognition, hallucinations, Parkinsonism |
| Frontotemporal Dementia (FTD) | Frontal/temporal lobe atrophy, tau or TDP-43 pathology       | Behavioral changes, language deficits               |
| Mixed Dementia                | AD + vascular damage                                         | Combined symptoms                                   |

Flavonoids & Dementia: Why the Connection? Dementia pathogenesis involves oxidative stress, chronic inflammation, synaptic loss, and vascular dysfunction—all of which are modulated by flavonoids through: Inhibition of NF-kB, IL-6, and TNF- $\alpha$ . Activation of Nrf2 antioxidant pathway. Upregulation of BDNF and synaptic proteins. Improved cerebral blood flow (CBF) and endothelial function. Reduction of amyloid- $\beta$  aggregation and tau hyperphosphorylation.

# 2.4. Mechanisms of Action of Flavonoids in Cognitive Function and Dementia

The therapeutic relevance of flavonoids in dementia arises from their ability to modulate biological pathways involved in neurodegeneration, including oxidative stress, neuroinflammation, synaptic dysfunction, impaired cerebral blood flow, mitochondrial damage, protein aggregation (amyloid- $\beta$  and tau), and gut—brain axis alterations. Flavonoids affect these systems either directly in the brain or indirectly through peripheral metabolic and immune signaling. This section explores how dietary flavonoids are absorbed, transported to the brain, and influence cellular physiology relevant to cognitive decline and dementia. Although dietary flavonoids are abundant in fruits and vegetables, their biological effects depend heavily on absorption and metabolism. Most flavonoids are ingested in glycosylated forms and undergo enzymatic hydrolysis in the intestine and further phase II metabolism (methylation, glucuronidation, sulfation) in the liver (Manach et al., 2004). The blood—brain barrier (BBB) is a lipid-rich membrane that limits entry of polar compounds. Only a small fraction of flavonoids, usually as aglycones or small phenolic metabolites, can cross it via:

| Transport Mechanism        | Relevant Flavonoids/Metabolites                               |  |
|----------------------------|---------------------------------------------------------------|--|
| Passive diffusion          | Lipophilic aglycones (quercetin, catechin)                    |  |
| Carrier-mediated transport | Glucose transporters (GLUT1) for quercetin glycosides         |  |
| Efflux inhibition          | Flavonoids inhibit P-glycoprotein, increasing brain retention |  |
| Gut-derived metabolites    | Phenolic acids (e.g., protocatechuic acid) readily cross BBB  |  |

Studies by Youdim et al. (2004) showed that flavanol epicatechin and its metabolites were detected in rodent brain regions such as the hippocampus and cortex following oral administration. Oxidative stress—resulting from excessive reactive oxygen species (ROS)—is a key driver of neuronal death and DNA damage in dementia, especially Alzheimer's disease. Flavonoids neutralize superoxide radicals ( $O_2$ ), hydroxyl radicals ( $O_3$ ), peroxynitrite (ONOO—) via hydrogen donation from hydroxyl groups Journal of Tropical Pharmacy and Chemistry (JTPC) Year 2025, Vol. 9, No. 1

on ring B. Quercetin and epigallocatechin gallate (EGCG) are among the most potent radical scavengers (Pietta, 2000). Flavonoids activate nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces expression of endogenous antioxidant enzymes:

| Target Enzymes              | Effect                                                        |
|-----------------------------|---------------------------------------------------------------|
| Superoxide dismutase (SOD)  | Converts O <sub>2</sub> — to H <sub>2</sub> O <sub>2</sub>    |
| Glutathione peroxidase (GPx | ) Detoxifies H <sub>2</sub> O <sub>2</sub>                    |
| Catalase (CAT)              | Breaks down H <sub>2</sub> O <sub>2</sub> to water and oxygen |
| Heme oxygenase-1 (HO-1)     | Cytoprotective & anti-inflammatory                            |

Studies show anthocyanins from blueberries increase Nrf2 nuclear translocation and HO-1 expression in hippocampal neurons (Shukitt-Hale et al., 2015). Flavonoids stabilize mitochondrial membranes and prevent apoptosis by: Inhibiting mitochondrial permeability transition pore (mPTP). Preserving ATP synthesis and mitochondrial DNA integrity. Reducing cytochrome c release and caspase-3 activity (Kumar & Bansal, 2013). Chronic neuroinflammation is mediated by microglia and astrocytes through release of pro-inflammatory cytokines (IL-1 $\beta$ , TNF- $\alpha$ , IL-6) and activation of signaling pathways such as NF- $\kappa$ B and MAPK. Flavonoids reduce inflammatory signaling by:

| Mechanism                                  | Flavonoid Examples                                          |
|--------------------------------------------|-------------------------------------------------------------|
| NF-KB inhibition                           | Luteolin, quercetin, apigenin                               |
| Inhibition of TNF- $\alpha$ & IL-1 $\beta$ | Anthocyanins from blueberries                               |
| Suppression of COX-2 & iNOS                | EGCG from green tea                                         |
| Regulation of microglia polarization       | Shifting from M1 (pro-inflammatory) to M2 (neuroprotective) |

In a study by Jeong et al. (2018), luteolin-treated microglia showed reduced production of ROS, NO, and TNF- $\alpha$  when stimulated with lipopolysaccharide. Flavonoids interfere with amyloidogenesis via: Inhibiting  $\beta$ -secretase (BACE1) enzyme responsible for amyloid- $\beta$  formation. Binding to  $A\beta$  monomers to prevent fibril formation. Enhancing clearance through autophagy and lysosomal pathways. EGCG from green tea was shown to remodel amyloid fibrils into non-toxic oligomers (Ehrnhoefer et al., 2008). Tau protein becomes pathogenic when hyperphosphorylated via kinases like GSK-3 $\beta$  and CDK5. Flavonoids such as baicalein and genistein downregulate these kinases, reducing tau aggregation (Huang et al., 2021). Flavonoids enhance neuronal signaling and synaptic resilience, especially in the hippocampus—key for learning and memory.

| Target Pathway                | Effect of Flavonoids                   |
|-------------------------------|----------------------------------------|
| BDNF + TrkB activation        | ↑ Synaptic growth and LTP              |
| CREB phosphorylation          | ↑ Memory consolidation                 |
| PI3K/Akt & ERK signaling      | ↑ Neuron survival                      |
| Neurogenesis in dentate gyrus | s Stimulated by blueberry anthocyanins |

Studies by Rendeiro et al. (2015) found that 60 days of blueberry supplementation increased BDNF expression and spatial memory in aged rats. Cerebrovascular dysfunction is a hallmark of vascular dementia and contributes to Alzheimer's progression. Effects of Flavonoids on Vascular Health: Promote nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). Reduce arterial stiffness and blood pressure. Prevent platelet aggregation. Increase cerebral perfusion. Human studies showed cocoa flavanols (520–900 mg daily) increase cerebral blood flow in older adults within 2 hours of consumption (Sorond et al., 2013). Flavonoids are metabolized by gut bacteria into phenolic acids that modulate Neurotransmitter synthesis (GABA, serotonin). Systemic inflammation and vagus nerve signaling. Bloodbrain barrier integrity. Anthocyanins increase Akkermansia and Bifidobacterium, reducing gut permeability and systemic inflammation—factors implicated in dementia progression.

# 2.5. Evidence from Specific Flavonoid Subclasses

Flavonoids are not a single compound but a family of structurally diverse molecules. Their effects on cognition and dementia vary depending on subclass, bioavailability, metabolism, and molecular targets in the brain. This section analyzes four major subclasses most relevant to dementia research: Anthocyanins (e.g., berries, purple fruits). Flavanols / Flavan-3-ols (e.g., cocoa, tea). Flavonols (e.g., onions, apples, kale). Isoflavones (e.g., soy products).

#### a. Anthocyanins

Anthocyanins are water-soluble pigments that give berries, cherries, blackcurrants, grapes, and red cabbage their red, purple, or blue color. The most studied anthocyanins for neuroprotection are cyanidin, delphinidin, malvidin, and pelargonidin.

Mechanisms Relevant to Dementia

| Mechanism                                             | Anthocyanin Effects                                                                  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Antioxidant                                           | Strong ROS scavenging and Nrf2 activation                                            |  |
| Anti-inflammatory                                     | $\downarrow$ NF-KB, $\downarrow$ TNF- $\alpha$ , $\downarrow$ IL-6 in microglia      |  |
| Amyloid inhibition                                    | Interfere with $A\beta$ fibril formation                                             |  |
| Tau protection                                        | Downregulate GSK-3 $\beta$ and tau phosphorylation                                   |  |
| Neuroplasticity                                       | $\uparrow$ BDNF, $\uparrow$ CREB phosphorylation, $\uparrow$ dendritic spine density |  |
| Cerebral blood flow Improve endothelial NO production |                                                                                      |  |

Anthocyanins cross the BBB in small, metabolized forms (e.g., protocatechuic acid). They accumulate preferentially in the hippocampus and prefrontal cortex, key regions for memory. Human Clinical Evidence

Several randomized trials have shown that berry consumption improves memory in older adults:

- Krikorian et al. (2010) Blueberry juice (12 weeks) improved verbal memory and delayed recall in MCI patients.
- Whyte et al. (2018) 24-week blueberry powder supplementation improved working memory in older adults.
- Zhang et al. (2022) Anthocyanin extract supplementation reduced serum tau & improved MoCA scores in early AD.

Animal and In Vitro Studies

- Blueberry-fed aged rats showed reversal of spatial memory decline and increased hippocampal BDNF (Shukitt-Hale et al., 2015).
- In APP/PS1 Alzheimer's mice, anthocyanins reduced amyloid plaques and restored synaptic proteins (PSD-95, synaptophysin) (Zhao et al., 2020).

# b. Flavanols/Flavan-3-ols (Cocoa, Tea, Apples)

Sources and Key Compounds. Major dietary flavanols include catechin, epicatechin, and epigallocatechin gallate (EGCG). Richest sources: Cocoa powder/dark chocolate. Green & black tea. Apples, grapes, red wine

Mechanisms in Neuroprotection

| Mechanism                    | Evidence                                                                         |  |  |
|------------------------------|----------------------------------------------------------------------------------|--|--|
| Improved cerebral blood flow | v Cocoa flavanols $\uparrow$ nitric oxide $\rightarrow \uparrow$ brain perfusion |  |  |
| Mitochondrial protection     | EGCG ↑ ATP production, preserves membrane potential                              |  |  |
| Anti-amyloid                 | EGCG converts toxic $\ensuremath{A\beta}$ fibrils into non-toxic forms           |  |  |
| Anti-tau                     | Inhibits CDK5, GSK-3 $\beta$ tau kinases                                         |  |  |
| Synaptic plasticity          | ↑ BDNF, ↑ hippocampal dendritic spines                                           |  |  |

Human Trials (Highlights)

- Mastroiacovo et al. (2015) Cocoa flavanols (993 mg/day) improved attention, verbal fluency, and processing speed in elderly subjects.
- Dai et al. (2020) Green tea extract (EGCG) improved MoCA scores in 6-month MCI trial.
- Sorond et al. (2013) Cocoa drink increased middle cerebral artery blood flow by 8% in 2 hours.

#### Alzheimer's Animal Models

- EGCG reduced amyloid plaques and neuroinflammation in Tg2576 AD mice (Lee et al., 2019).
- Cocoa flavanols restored LTP (long-term potentiation) and memory deficits in  $A\beta$ -injected rodents.

# c. Flavonols (Quercetin, Kaempferol)

Sources. Top flavonol-rich foods include onions, kale, broccoli, apples, berries, tea. Mechanisms. Strongest flavonoid subclass for antioxidant and mitochondrial protection. Quercetin is one of few polyphenols proven to cross the BBB in active form.

#### **Human Studies**

- Harvard Aging Study (Devore et al., 2012) High flavonol intake  $\rightarrow$  47% lower AD risk.
- Chicago Rush Memory Study (Holland et al., 2020) Quercetin intake correlated with slower cognitive decline over 6 years.

#### Brain Effects in Models

- Quercetin reduced tau aggregation, improved autophagy, and lowered oxidative DNA damage in AD mice.
- Kaempferol protected neurons against amyloid- $\beta$  toxicity and mitochondrial failure.
- d. Isoflavones (Soy Genistein and Daidzein)

# Background

Isoflavones are phytoestrogens plant compounds structurally similar to estradiol. Main sources: soybeans, tempeh, tofu, miso.

# Mechanistic Actions

| Mechanism                                          | Effect                                                      |  |  |
|----------------------------------------------------|-------------------------------------------------------------|--|--|
| Estrogen receptor $\beta$ (ER $\beta$ ) activation | Promotes neuroprotection & synaptic plasticity              |  |  |
| Anti-amyloid                                       | Genistein reduces $\beta\text{-secretase}$ (BACE1) activity |  |  |
| Anti-inflammatory                                  | $\downarrow$ microglia activation, IL-6, TNF- $\!\alpha$    |  |  |
| Epigenetic modulation                              | Alters DNA methylation of APP and tau genes                 |  |  |

# Clinical Trials

- Henderson et al. (2010) Soy isoflavones (100 mg/day, 6 months) improved verbal memory in postmenopausal women.
- Zhang et al. (2021) Genistein (60 mg/day) stabilized MMSE scores in mild AD patients.
- Results are variable, depending on menopausal status, microbiome (equol producers), APOE genotype.

Table 1. Key Human Clinical Trials (2015–2024) on Flavonoids and Cognitive Function

|                                                  |                                                  | `                                                                | *                                   | Cognitive                                                |                                                                                                     |
|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Study / Year                                     | Population (Age /<br>Condition)                  | Flavonoid Source &<br>Dosage                                     | Duration                            | Domains<br>Measured                                      | Main Outcomes                                                                                       |
| Krikorian et al.,<br>2010; 2012                  | 65+ years, Mild<br>Cognitive<br>Impairment (MCI) | Blueberry juice<br>(anthocyanins)<br>~400–500 mg/day             | 12 weeks                            | Memory (verbal<br>recall, paired<br>association)         | Improved verbal<br>memory & delayed<br>recall; reduced<br>depressive symptoms                       |
| Whyte et al., 2018                               | Healthy older<br>adults (65–77 y)                | Freeze-dried<br>blueberry powder<br>(anthocyanins) 269<br>mg/day | 24 weeks                            | Working<br>memory,<br>executive<br>function              | Significant improvement in working memory; no effect on attention                                   |
| Bensalem et al.,<br>2019                         | 60–70 y,<br>subjectively<br>cognitively healthy  | Polyphenol-rich<br>berry and tea<br>flavonoid extract            | 6 months                            | Episodic memory,<br>attention,<br>executive<br>function  | Improved episodic<br>memory & processing<br>speed; MRI showed<br>preserved hippocampal<br>perfusion |
| Mastroiacovo et al., 2015                        | 61–85 y, healthy                                 | Cocoa flavanols<br>(520 mg or 993<br>mg/day)                     | 8 weeks                             |                                                          | Higher cocoa group<br>showed improved<br>processing speed and<br>verbal fluency                     |
| Sorond et al., 2013                              | 50–80 y, vascular<br>risk adults                 | Cocoa flavanols 900<br>mg/day                                    | 30 days                             | Cerebral blood<br>flow (CBF),<br>attention               | CBF increased (†8%);<br>improved Trail Making<br>Test (attention and<br>scanning)                   |
| Ding et al., 2020                                | Mild Cognitive<br>Impairment                     | EGCG (green tea<br>flavanol) 400<br>mg/day                       | 6 months                            | MoCA, MMSE,<br>memory tests                              | Improved MoCA scores and immediate memory recall                                                    |
| Holland et al.,<br>2020                          | 921 older adults                                 | Dietary flavonol<br>intake (food-based:<br>onions, apples, kale) | 6-year<br>observational             | Global cognition,<br>episodic memory,<br>semantic memory | Highest flavonol intake<br>group: 48% lower risk<br>of Alzheimer's                                  |
| Devore et al.,<br>2012 (Nurses'<br>Health Study) | 16,010 women (70+ y)                             | Dietary flavonoids<br>(berries, flavonols)                       | 20-year<br>prospectively<br>tracked | Memory decline trajectories                              | Higher berry intake<br>slowed cognitive aging<br>by 2.5 years                                       |
| Zhang et al., 2021                               | Mild to moderate<br>Alzheimer's<br>Disease       | Genistein (soy<br>isoflavone) 60<br>mg/day                       | 12 months                           | MMSE, ADAS-<br>Cog                                       | Stabilized cognitive<br>decline vs placebo; effect<br>stronger in APOEε4−<br>patients               |
| Henderson et al.,<br>2010                        | Postmenopausal<br>women                          | Soy isoflavones (100 mg/day total isoflavones)                   | 6 months                            | Verbal memory,<br>visual memory                          | Improved verbal<br>memory; effect<br>dependent on equol-<br>producing microbiome<br>status          |
| Small et al., 2018                               | 50–65 y, subjective<br>memory complaints         | Grape extract<br>(anthocyanins +<br>flavonols)                   | 6 months                            | fMRI<br>hippocampal<br>activation,<br>memory             | Increased hippocampal activity, improved word recall                                                |
| Rendeiro et al.,<br>2022                         | Healthy older adults                             | Purple grape juice (anthocyanins)                                | 12 weeks                            | Spatial memory,<br>blood biomarkers                      | Improved working<br>memory and decreased<br>IL-6 inflammation<br>markers                            |
| Hooper et al.,<br>2023 (Systematic               | 41 RCTs, 2,900 subjects                          | Flavonoid subclasses (berries, cocoa, tea)                       | 3–24 weeks                          | Global cognition, memory,                                | Small but significant improvements in                                                               |

| Study / Year              | Population (Age /<br>Condition) | Flavonoid Source &<br>Dosage | Duration | Cognitive<br>Domains<br>Measured | Main Outcomes                        |
|---------------------------|---------------------------------|------------------------------|----------|----------------------------------|--------------------------------------|
| review/meta-<br>analysis) |                                 |                              |          | executive<br>function            | episodic memory and processing speed |

Key Takeaways from Clinical Evidence (2015–2024). Most consistent improvements are seen in memory and processing speed, especially with anthocyanins and cocoa flavanols. Best results occur in older adults with mild cognitive impairment (MCI) rather than healthy adults. Flavonoids improve cerebral blood flow, hippocampal perfusion, and synaptic function. Long-term dietary intake (observational studies) shows lower dementia and Alzheimer's incidence. Isoflavones may be more effective in women, especially postmenopausal or equol-producers. Few trials involve diagnosed dementia patients a major research gap.

# 2.6. Effects on Different Cognitive Domains

Dietary flavonoids do not exert uniform effects across cognition; rather, domain-specific sensitivity is observed, with the most consistent signals emerging for **episodic memory** and **processing speed**, followed by more variable effects on **attention** and **executive function**. Heterogeneity in results is partly attributable to differences in study design (acute vs. chronic dosing, food vs. extract), participant characteristics (healthy vs. MCI vs. dementia), and the cognitive batteries employed. Below, we synthesize evidence by domain and map plausible mechanisms to each outcome profile.

# 2.7. Flavonoids Impact on Memory

Episodic memory—often measured by delayed word list recall, paragraph recall, or pairedassociate learning—shows the clearest and most replicated benefits from flavonoid intake. Anthocyaninrich interventions (e.g., blueberries, grapes) and cocoa flavanols frequently report improvements in delayed recall and learning rate in older adults and individuals with mild cognitive impairment (MCI). Longitudinal observational cohorts also associate higher habitual intake of anthocyanins and flavonols with slower memory decline and lower Alzheimer's disease incidence. Mechanistically, memory improvements align with increased hippocampal BDNF, CREB phosphorylation, improved dentate gyrus neurogenesis, and better hippocampal perfusion; anthocyanin metabolites have been detected in hippocampal tissue in animal models. In parallel, reductions in neuroinflammation (NF-κB) and oxidative stress (Nrf2-HO-1 axis) protect synapses and dendritic spines, supporting long-term memory consolidation. Effects on working memory—assessed via n-back, digit span, or spatial working memory tasks—are more mixed but are often positive in trials using cocoa flavanols and berry extracts over weeks to months. Acute dosing studies (1-3 h post-consumption) sometimes detect working memory gains, consistent with endothelial-NO-mediated increases in cerebral blood flow and possible catecholaminergic modulation. Chronic studies attribute effects to synaptic plasticity and vascular remodeling. Null results typically occur in healthy, high-performing samples (ceiling effects) or when doses are low and intervention periods are short. Attention is frequently parsed into sustained attention (vigilance), selective attention, and attentional control. Acute cocoa flavanol or tea catechin intake has produced modest improvements in sustained attention and alertness, detectable on continuous performance tests or rapid visual information processing tasks within 1-3 hours post-ingestion. These near-term effects are plausibly driven by vascular (CBF) enhancement and arousal. Chronic anthocyanin or flavanol interventions occasionally report sustained attention gains, but findings are less consistent than for memory or processing speed. Methodological variability (task sensitivity, practice effects, and session timing) likely contributes to heterogeneity. Notably, attention benefits tend to be larger in older adults with vascular risk—groups in whom baseline cerebrovascular reserve is lower and thus more responsive to NO-mediated perfusion changes. Executive function encompasses set-shifting, inhibitory control, planning, and cognitive flexibility, commonly measured by Trail Making Test B, Stroop interference,

Journal of Tropical Pharmacy and Chemistry (JTPC) Year 2025, Vol. 9, No. 1

verbal fluency, and task-switching paradigms. Across trials, executive outcomes exhibit small, variable effects. Improvements are reported most often with higher-dose cocoa flavanols and polyphenol blends over 8–24 weeks, sometimes accompanied by better verbal fluency and task switching. Mechanistically, executive function relies heavily on frontoparietal networks that are sensitive to vascular integrity, myelination, and neuroinflammation—pathways modulated by flavonoids (eNOS activation, reduced microglial cytokines). In MCI or metabolic syndrome cohorts, executive gains may be mediated by improved insulin sensitivity and cerebral perfusion. However, many null findings reflect insufficient trial duration to capture the slower neurovascular and white-matter changes underpinning executive function, and the lack of standardized executive batteries across studies. Processing speed—assessed through simple/choice reaction time or symbol substitution—is the second most consistently improved domain following flavonoid interventions. Repeatedly, cocoa flavanols and berry anthocyanins accelerate response times and enhance psychomotor speed in older adults within weeks, and sometimes acutely. These effects plausibly arise from macro- and microvascular benefits (increased middle cerebral artery velocity; improved endothelial function) and mitochondrial support (enhanced ATP availability) that lower neural energy costs per unit information processed. Small-to-moderate effect sizes are typical, with larger effects in individuals exhibiting vascular risk factors (hypertension, insulin resistance) or lower baseline performance. Two converging explanations account for stronger effects in memory and processing speed: Neurobiological Targeting: Memory is linked to hippocampal plasticity, BDNF/CREB signaling, and synaptic resilience—all repeatedly enhanced by anthocyanins and flavanols, with corroborative animal evidence (increased dendritic spine density, LTP rescue, adult neurogenesis). Processing speed reflects global network efficiency and vascular sufficiency; flavonoids consistently improve cerebrovascular function and mitochondrial bioenergetics, thereby facilitating faster information throughput. Measurement Sensitivity: Episodic memory and reaction-time tasks often show higher testretest reliability and lower ceiling effects than certain executive or attentional measures used in nutrition trials, increasing power to detect modest improvements. Moderators of Domain-Specific Effects: Population: MCI or older adults with metabolic/vascular risk show larger gains across domains especially memory and speed—than young, healthy participants. Dose and Duration: Acute attention/speed effects can emerge within hours; memory and executive benefits typically require chronic exposure (≥8–12 weeks) at moderate-to-high doses of anthocyanins or flavanols. Formulation and Bioavailability: Standardized extracts (high anthocyanin/flavanol content), microencapsulation, and co-ingestion with fats may enhance CNS delivery, amplifying memory and speed outcomes. Baseline Diet and Microbiome: Individuals with microbiomes that efficiently convert flavonoids to brain-penetrant phenolic acids exhibit greater memory benefits; equol-producer status modulates isoflavone effects, particularly on verbal memory. Task Choice and Practice Effects: Highly practiced tests may mask subtle improvements; employing alternate forms, computerized reaction-time batteries, and composite z-scores increases sensitivity. Clinical Interpretation. For clinicians and trialists, three practical points emerge: Primary endpoints for flavonoid trials should prioritize episodic memory and processing speed, with secondary attention and executive measures. Target populations most likely to benefit include MCI, preclinical AD risk (e.g., family history, APOE & carriers), and older adults with vascular/metabolic risk. Multimodal biomarker panels (e.g., cerebral blood flow by arterial spin labeling MRI, BDNF, inflammatory cytokines, and plasma/urinary phenolic metabolites) should accompany cognitive batteries to link domain changes to mechanisms.

# 2.8. Impact of Flavonoids on Different Types of Dementia

Although research on flavonoids and cognition has expanded significantly, most evidence centers on Alzheimer's disease (AD) and mild cognitive impairment (MCI), whereas other forms of dementia remain comparatively underexplored. Given the heterogeneity of dementia etiologies—ranging from proteinopathies (AD, Lewy Body dementia), cerebrovascular dysfunction (vascular dementia), to

frontotemporal lobe degeneration (FTD)—the efficacy of flavonoids may differ across subtypes based on underlying pathology.

# a. Alzheimer's Disease (AD).

AD is the most extensively studied dementia subtype in relation to dietary flavonoids. It is characterized by amyloid- $\beta$  (A $\beta$ ) plaques, hyperphosphorylated tau tangles, synaptic degeneration, neuroinflammation, oxidative stress, and cholinergic deficits. Mechanisms by which flavonoids affect AD pathology. Flavonoids can target multiple pathological hallmarks of AD simultaneously:

| AD Pathology<br>Component   | Flavonoid Mechanism of Action                                                                                    |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|
| Amyloid-β aggregation       | EGCG and curcumin remodel amyloid fibrils into non-toxic forms; quercetin and anthocyanins reduce BACE1 activity |
| Tau<br>hyperphosphorylation | Baicalein, quercetin inhibit GSK-3 $\beta$ and CDK5 kinases, reducing tau aggregation                            |
| Oxidative stress            | Anthocyanins and quercetin activate Nrf2 $\rightarrow$ $\uparrow$ SOD, catalase, HO-1                            |
| Neuroinflammation           | Luteolin, apigenin inhibit NF- $\kappa B,$ suppress microglial TNF- $\!\alpha$ and IL-6                          |
| Synaptic dysfunction        | Blueberry flavonoids $\uparrow$ BDNF, $\uparrow$ CREB, restore synaptophysin and PSD-95 levels                   |

Human Evidence in AD. Randomized Controlled Trials: Zhang et al. (2021): Genistein supplementation (60 mg/day) for 12 months attenuated cognitive decline in mild-to-moderate AD patients. Small et al. (2018): Grape polyphenol extract increased hippocampal connectivity and improved memory performance in subjects with early cognitive decline. Tsolaki et al. (2020): Pomegranate polyphenols improved MMSE scores and lowered plasma A $\beta$ 42 in AD patients.

Observational Cohorts: Rush Memory and Aging Project (Holland et al., 2020): Highest quartile of flavonol intake had 47% reduced AD risk. Nurses' Health Study II: High berry intake (anthocyanin-rich) was associated with a slower rate of memory decline by 2.5 years.

Animal & Cellular Studies: Anthocyanins (blueberry, bilberry) reduce  $A\beta$  plaque burden and preserve hippocampal neuron density in APP/PS1 transgenic mice. EGCG reduces tau phosphorylation and enhances autophagy-mediated  $A\beta$  clearance. Quercetin improves memory in AD mouse models via anti-inflammatory and antioxidant mechanisms. Conclusion: Strongest evidence supports flavonoid benefits in AD, especially anthocyanins, flavanols, and flavonols.

# b. Vascular Dementia (VaD)

VaD results from impaired cerebral blood flow due to stroke, microvascular ischemia, hypertension, or small vessel disease. Cognitive symptoms include impaired processing speed, executive function, and attention.

Mechanisms by which flavonoids affect VaD

| Pathology in VaD                       | Flavonoid Action                                                                                                |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Endothelial dysfunction                | Cocoa flavanols $\uparrow$ NO production $\rightarrow$ vasodilation $\rightarrow$ $\uparrow$ cerebral perfusion |
| Oxidative damage in vessels            | Anthocyanins $\downarrow$ lipid peroxidation and restore mitochondrial function in endothelial cells            |
| Blood-brain barrier damage             | Flavonoids strengthen tight junctions, reduce MMP-9 activity                                                    |
| Microthrombosis & platelet aggregation | Flavanols reduce fibrin formation and platelet aggregation                                                      |
| White matter lesions                   | Antioxidant and anti-inflammatory effects prevent oligodendrocyte loss                                          |

Human Studies. Direct flavonoid trials in diagnosed vascular dementia patients are extremely limited. However: Sorond et al. (2013): Cocoa flavanols increased cerebral blood flow by 8–10% in hypertensive elderly individuals, improving processing speed. Paterson et al. (2021): Green tea catechins improved endothelial function and reduced white matter lesion progression. Conclusion: Mechanistic rationale is solid, but clinical trials in VaD patients are urgently needed.

Dementia with Lewy Bodies (DLB). DLB is characterized by  $\alpha$ -synuclein aggregates, fluctuating cognition, hallucinations, and parkinsonian symptoms. Research linking flavonoids to DLB is minimal but promising. Potential Mechanisms. EGCG, quercetin, and baicalein inhibit  $\alpha$ -synuclein fibril formation. Flavonoids reduce oxidative stress in dopaminergic neurons (SNpc region). Anti-inflammatory actions reduce microglial activation seen in DLB. Current Evidence: No completed human RCTs using flavonoids exclusively in DLB. In vitro: EGCG prevents  $\alpha$ -synuclein fibrillation (Ehrnhoefer et al., 2008). Animal Models of Parkinsonism: EGCG and quercetin reduce motor deficits and dopaminergic neuron loss. Conclusion: Mechanistically promising, but clinical trials in DLB are absent.

# c. Frontotemporal Dementia (FTD)

FTD involves degeneration of frontal and temporal lobes, often with tau or TDP-43 accumulation, leading to behavioral changes and language deficits.

#### Flavonoids & FTD?

| Aspect            | Evidence                                                                                   |
|-------------------|--------------------------------------------------------------------------------------------|
| Tau aggregation   | Flavonoids (quercetin, baicalein) inhibit GSK-3 $\beta$ $\rightarrow$ reduce tau pathology |
| Neuroinflammation | Luteolin downregulates IL-6 and TNF- $\alpha$ in cortical neurons                          |
| Clinical trials   | None conducted in FTD patients                                                             |

Conclusion: No human studies, evidence is purely mechanistic. High priority for research.

# d. Mixed Dementia (AD + Vascular)

Most dementia patients exhibit mixed pathology (AD + cerebrovascular damage). Flavonoids may be uniquely suited here due to dual amyloid and vascular effects. Observational studies show that berry, tea, and apple flavonoids correlate with lower mixed dementia incidence. No RCTs specifically target mixed dementia yet.

# Summary of Section 6

| Dementia Type           | Evidence Strength   | Flavonoids with Best Evidence      | Research Gap            |
|-------------------------|---------------------|------------------------------------|-------------------------|
| Alzheimer's             | Strong              | Anthocyanins, Flavanols, Flavonols | Need late-stage AD RCTs |
| Vascular Dementia       | Moderate (indirect) | Cocoa flavanols, tea catechins     | Few direct human trials |
| Lewy Body Dementia      | Weak (mechanistic)  | EGCG, baicalein, quercetin         | No human studies        |
| Frontotemporal Dementia | Very weak           | Only preclinical evidence          | No clinical research    |
| Mixed Dementia          | Emerging            | Anthocyanins + flavanols           | RCTs needed             |

# 2.9. Factors Influencing Flavonoid Efficacy in Cognitive Function and Dementia

Although growing preclinical and epidemiological evidence supports the neuroprotective role of flavonoids, cognitive outcomes in human studies vary considerably. This variability can be attributed to multiple factors that affect how flavonoids are absorbed, metabolized, reach the brain, and exert biological effects. These factors are grouped into pharmacokinetic, biological, dietary, and methodological determinants.

Dosage, Form, and Bioavailability. Optimal Dose Range, flavonoid intake varies widely across human trials—ranging from 50 mg/day (low dietary intake) to over 1,000 mg/day (high-dose extracts). Evidence suggests: Low dietary intake (<100 mg/day) may be insufficient for therapeutic CNS levels. Effective neurocognitive outcomes are usually seen at ≥300–500 mg/day of specific subclasses (e.g., anthocyanins or cocoa flavanols). Doses >1,000 mg/day have not consistently shown stronger effects, suggesting a threshold rather than linear dose-response. Food-Based vs. Extract-Based Delivery.

| Parameter          | Whole Foods (e.g., blueberries)             | Extracts (capsules, powders)               |
|--------------------|---------------------------------------------|--------------------------------------------|
| Bioavailability    | Lower, but synergistic with fiber, vitamins | Higher purity and concentration            |
| Metabolites        | More gut microbiome-dependent               | More controlled pharmacokinetics           |
| Clinical relevance | Realistic dietary approach                  | Higher potential for trials or medical use |

Journal of Tropical Pharmacy and Chemistry (JTPC) Year 2025, Vol. 9, No. 1  $\,$ 

Synergy: Whole fruits also contain vitamin C, potassium, fiber, and phenolic acids that enhance flavonoid absorption and antioxidant action.

Factors Reducing Bioavailability: Food processing (pasteurization, heating berries) reduces anthocyanin content by up to 40–60%. Co-ingestion with proteins (milk) can inhibit absorption of tea catechins. Conjugation (glucuronides, sulfates) in the liver reduces active aglycone availability.

Duration of Consumption: Acute vs. Chronic Effects

| Duration                | Example Effects                                                           | Mechanism                                                          |
|-------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| Acute (1–6 hours)       | $\uparrow$ Attention, $\uparrow$ processing speed (after cocoa flavanols) | $\uparrow$ Nitric oxide $\rightarrow \uparrow$ cerebral blood flow |
| Short-term (4–12 weeks) | $\uparrow$ Episodic memory, $\downarrow$ oxidative markers                | Synaptic plasticity, $\downarrow$ inflammation                     |
| Long-term (6–24 months) | ↓ Cognitive decline in MCI, ↓ dementia risk (observational)               | Structural brain changes, amyloid/tau modulation                   |

Most trials showing cognitive improvement lasted at least 8–12 weeks, suggesting chronic intake is necessary for neuroplastic and disease-modifying benefits.

Individual Biological Differences. Age, older adults exhibit increased gut permeability, oxidative stress, lower hepatic metabolic capacity—making them more responsive to flavonoids. Younger adults often show minimal cognitive benefit (likely due to cognitive performance ceiling effects). Genetic Variability (e.g., APOE- $\epsilon$ 4): The APOE- $\epsilon$ 4 allele increases oxidative stress and impairs amyloid clearance. Some flavonoid interventions (e.g., blueberry anthocyanins) show greater memory enhancement in APOE- $\epsilon$ 4 carriers, while others show reduced responsiveness highlighting gene diet interactions. Sex and Hormonal Status: Postmenopausal women respond better to soy isoflavones, due to interaction with estrogen receptors (ER $\beta$ ). Younger women show less pronounced effects, likely due to endogenous estrogen levels. Gut Microbiota Composition. Flavonoids rely on microbial metabolism to form brain-active compounds (e.g., protocatechuic acid). Individuals vary in these capacities:

| Microbiome Type                               | Cognitive Impact of Flavonoids                                    |
|-----------------------------------------------|-------------------------------------------------------------------|
| High Bifidobacterium, Lactobacillus           | Better phenolic conversion $\rightarrow$ stronger neuroprotection |
| "Equol producers" (soy isoflavones)           | Improved verbal memory & anti-inflammatory effects                |
| Dysbiosis / high Firmicutes/Bacteroides ratio | Reduced flavonoid metabolism $\rightarrow$ weaker effectiveness   |

# 3. Conclusion

Dementia represents a growing global health crisis, with no definitive cure and limited diseasemodifying treatments. Dietary interventions, particularly those derived from plant-based bioactive compounds, are emerging as promising strategies for cognitive preservation and dementia prevention. Among these, flavonoids—naturally occurring polyphenols found in fruits, vegetables, tea, cocoa, soy, and wine—have garnered extensive attention due to their neuroprotective, anti-inflammatory, antioxidant, and vasodilatory properties. This review synthesized current mechanistic, preclinical, epidemiological, and clinical evidence regarding the impact of flavonoids on cognitive function and dementia, following a structured exploration of molecular pathways, cognitive outcomes, dementia subtypes, and translational challenges. Key Scientific Insights. Based on the accumulated literature, four major insights emerge: Flavonoids target multiple dementia-related mechanisms simultaneously. These include: Reduction of oxidative stress via Nrf2 activation and ROS scavenging. Inhibition of NF- $\kappa B$ -mediated neuroinflammation. Modulation of amyloid- $\beta$  and tau pathology (key in Alzheimer's disease). Enhancement of synaptic plasticity, BDNF expression, and hippocampal neurogenesis. Improvement of cerebral blood flow and vascular function—particularly relevant to vascular dementia. Regulation of the gut-brain axis and microbial phenolic metabolism: 1) Clinical benefits are most consistent in memory and processing speed, particularly in older adults with mild cognitive impairment

Journal of Tropical Pharmacy and Chemistry (JTPC) Year 2025, Vol. 9, No. 1

or vascular/metabolic risk. Anthocyanins from berries and flavanols from cocoa/tea show the strongest evidence. Executive function and attention improve modestly but less consistently. Long-term consumption (>12 weeks), rather than acute dosing, yields more stable cognitive effects. 2) The strongest human evidence exists for Alzheimer's disease and cognitive aging, whereas research in vascular dementia, Lewy body dementia, and frontotemporal dementia remains limited or absent. Observational studies suggest that high flavonoid intake correlates with reduced AD risk. Early intervention, before significant neurodegeneration, may offer the greatest benefit. 3) Flavonoid efficacy is influenced by individual biological factors, including: APOE £4 genotype, influencing amyloid clearance and oxidative stress. Gut microbiome composition, determining metabolism of flavonoids into brain-permeable phenolics. Sex and hormonal status, particularly in isoflavone-related cognition improvements in postmenopausal women. Comorbidities such as diabetes, hypertension, obesity, which alter vascular and inflammatory status. Final Perspective, the body of evidence strongly indicates that flavonoids contribute to maintaining cognitive function and may attenuate the progression of neurodegenerative processes, particularly in Alzheimer's disease and age-related cognitive decline. Their actions are multi-targeted, systemic, and complementary to established medical therapies. However, current findings require cautious interpretation due to variability in bioavailability, study design, and population characteristics. Thus, while flavonoids cannot yet be classified as clinical therapeutics for dementia, they represent a compelling, low-risk strategy within a broader preventive framework—bridging nutrition, neuroscience, vascular health, and personalized medicine.

#### 4. Declarations

# 4.1. Acknowledgements

The authors would like to express their sincere gratitude to Atma Jaya Teaching & Research Hospital for the invaluable support and access to research facilities that contributed significantly to the success of this study. We also extend our heartfelt thanks to the Atma Jaya Catholic University for providing academic guidance, institutional support, and the resources necessary for conducting this research. The collaboration between these institutions was instrumental in the completion of this work.

### 4.2. Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper. No financial or non-financial interests, personal relationships, or affiliations have influenced the content, analysis, or conclusions presented in this research. All sources of funding, if any, are acknowledged transparently, and the research was conducted independently and without any commercial or institutional bias.

#### 5. References

- [1] D. Aarsland *et al.*, "A randomized, placebo-controlled trial of purified anthocyanins on cognition in individuals at increased dementia risk," *Am. J. Geriatr. Psychiatry*, advance online publication, 2023.
- [2] I. Bakoyiannis, A. Daskalopoulou, V. Pergialiotis, and D. Perrea, "Phytochemicals and cognitive health: Are flavonoids doing the trick?," *Gériatr. Psychol. Neuropsychiatr. Vieillissement*, vol. 17, no. 1, pp. 75–86, 2019.
- [3] J. Bensalem *et al.*, "Polyphenols from grape and blueberry attenuate cognitive decline in healthy elderly subjects: A randomized, double-blind, placebo-controlled clinical trial," *J. Gerontol. A Biol. Sci. Med. Sci.*, vol. 74, no. 7, pp. 996–1007, 2019.
- [4] J. Bieschke *et al.*, "EGCG remodels mature  $\alpha$ -synuclein and amyloid- $\beta$  fibrils into non-toxic off-pathway aggregates," *Proc. Natl. Acad. Sci.*, vol. 107, no. 17, pp. 7710–7715, 2010.

- [5] A. M. Brickman *et al.*, "Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults," *Nat. Neurosci.*, vol. 17, no. 12, pp. 1798–1803, 2014.
- [6] A. Cassidy et al., "Habitual intake of flavonoid subclasses and incident dementia," Am. J. Clin. Nutr., vol. 112, no. 2, pp. 343–353, 2020.
- [7] C. L. Cheatham and K. W. Sheppard, "Enhancing the cognitive effects of flavonoids with complementary approaches: A review," *Front. Neurosci.*, vol. 16, p. 833202, 2022.
- [8] D. Commenges et al., "Intake of flavonoids and risk of dementia," Eur. J. Epidemiol., vol. 16, no. 4, pp. 357–363, 2000.
- [9] C. Czank et al., "Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A (13)C-tracer study," Am. J. Clin. Nutr., vol. 97, no. 5, pp. 995–1003, 2013.
- [10] M. D'Archivio *et al.*, "Bioavailability of polyphenols: Status and controversies," *Int. J. Mol. Sci.*, vol. 11, no. 4, pp. 1321–1342, 2010.
- [11] W. Dai et al., "Epigallocatechin gallate (EGCG) for mild cognitive impairment: A randomized, double-blind, placebo-controlled trial," *Nutrients*, vol. 12, no. 10, p. 3106, 2020.
- [12] E. E. Devore *et al.*, "Dietary intakes of berries and flavonoids in relation to cognitive decline," *Ann. Neurol.*, vol. 72, no. 1, pp. 135–143, 2012.
- [13] V. Do Rosario *et al.*, "Anthocyanins through diet and supplementation: Protocol for an umbrella review and meta-analysis," *BMJ Open*, vol. 14, no. 9, p. e086435, 2024.
- [14] D. E. Ehrnhoefer *et al.*, "EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers," *Nat. Struct. Mol. Biol.*, vol. 15, no. 6, pp. 558–566, 2008.
- [15] S. E. File *et al.*, "Cognitive improvement after six weeks of soy supplements in postmenopausal women is limited to equal producers," *J. Nutr.*, vol. 135, no. 10, pp. 2589–2595, 2005.
- [16] S. L. Gardener, S. R. Rainey-Smith, and R. N. Martins, "Intake of anthocyanins, flavanols, and flavanones and cognitive function: Narrative review," *Front. Aging Neurosci.*, vol. 13, p. 640381, 2021.
- [17] J. Godos *et al.*, "Dietary (poly)phenols and cognitive decline: A systematic review and meta-analysis," *Mol. Nutr. Food Res.*, vol. 68, no. 11, p. 2300472, 2024.
- [18] V. W. Henderson *et al.*, "Long-term soy isoflavone supplementation and cognition in women: A randomized, controlled trial," *Neurology*, vol. 78, no. 23, pp. 1841–1848, 2012.
- [19] L. N. Hoang et al., "Natural compounds and extracts for cognition in AD/MCI: A systematic review and meta-analysis of RCTs," Front. Aging Neurosci., vol. 17, p. 1531278, 2025.
- [20] T. M. Holland *et al.*, "Dietary flavonols and risk of Alzheimer dementia," *Neurology*, vol. 94, no. 16, pp. e1749—e1756, 2020.

- [21] W. Huang et al., "Baicalein and tau pathology: Modulation of GSK-3 $\beta$  and cognitive outcomes in Alzheimer models," Biomed. Pharmacother., vol. 137, p. 111307, 2021.
- [22] J. W. Jeong et al., "Luteolin inhibits LPS-induced neuroinflammation via NF-κB suppression in microglia," Int. Immunopharmacol., vol. 59, pp. 21–29, 2018.
- [23] D. K. Joseph *et al.*, "Aerobic exercise and dietary flavonoids on cognitive impairment: Systematic review and meta-analysis," *Front. Physiol.*, vol. 14, p. 1216948, 2023.
- [24] K. Khalifa et al., "Purified anthocyanins and cognition in people at risk for dementia: Systematic review," Front. Neurol., vol. 11, p. 916, 2020.
- [25] R. Krikorian et al., "Blueberry supplementation improves memory in older adults," J. Agric. Food Chem., vol. 58, no. 7, pp. 3996–4000, 2010.
- [26] M. F. Kuczmarski *et al.*, "Association between flavonoid intake and executive function among diverse older adults (HANDLS)," *Nutrients*, vol. 16, no. 9, p. 1968, 2024.
- [27] D. J. Lamport *et al.*, "The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults: A placebo-controlled, crossover, acute trial," *Psychopharmacology*, vol. 232, no. 17, pp. 3227–3234, 2015.
- [28] J. W. Lee et al., "EGCG attenuates amyloid pathology and neuroinflammation in APP transgenic mice," Brain Res., vol. 1712, pp. 86–95, 2019.
- [29] L. Letenneur et al., "Flavonoid intake and cognitive decline over a 10-year period," Am. J. Epidemiol., vol. 165, no. 12, pp. 1364–1371, 2007.
- [30] E. Lorzadeh et al., "Anthocyanins and cognition: A systematic review and meta-analysis," Nutrients, vol. 17, no. 1, 2025.
- [31] C. Manach et al., "Bioavailability and bioefficacy of polyphenols in humans. I," Am. J. Clin. Nutr., vol. 81, no. 1 Suppl., pp. 230S–242S, 2005.
- [32] D. Mastroiacovo *et al.*, "Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: The CoCoA randomized controlled trial," *Am. J. Clin. Nutr.*, vol. 101, no. 3, pp. 538–548, 2015.
- [33] C. Mekhora *et al.*, "Effect of polyphenols on inflammation related to cognitive decline: A systematic review," *Nutr. Healthy Aging*, vol. 14, no. 1, pp. 1–18, 2024.
- [34] S. Neshatdoust *et al.*, "High-flavonoid intake induces cognitive improvements linked to changes in cerebrovascular function: A randomized trial," *Nutr. Healthy Aging*, vol. 4, no. 3, pp. 233–246, 2016.
- [35] A. N. Panche, A. D. Diwan, and S. R. Chandra, "Flavonoids: An overview," J. Nutr. Sci., vol. 5, p. e47, 2016.
- [36] K. G. Paterson *et al.*, "Green tea catechins, endothelial function, and white matter hyperintensity progression in older adults," *Nutrients*, vol. 13, no. 7, p. 2423, 2021.

- [37] P.-G. Pietta, "Flavonoids as antioxidants," J. Nat. Prod., vol. 63, no. 7, pp. 1035–1042, 2000.
- [38] C. Rendeiro, J. S. Rhodes, and J. P. E. Spencer, "The mechanisms of action of flavonoids in the brain: Therapeutic potential in aging," *Pharmacol. Biochem. Behav.*, vol. 135, pp. 85–99, 2015.
- [39] C. Rendeiro *et al.*, "Dietary levels of flavonoids improve spatial memory and reverse age-related neuronal deficits in mice," *PLoS One*, vol. 8, no. 5, p. e63535, 2013.
- [40] B. Shukitt-Hale, F. C. Lau, and J. A. Joseph, "Berry fruit supplementation and neuronal signaling in aging: Targeting the membrane," *J. Agric. Food Chem.*, vol. 56, no. 3, pp. 636–641, 2008.
- [41] B. Shukitt-Hale *et al.*, "Beneficial effects of fruit polyphenols on neuronal signaling and behavior," *Adv. Nutr.*, vol. 6, no. 5, pp. 576–592, 2015.
- [42] G. W. Small et al., "Memory and fMRI changes after grape-derived polyphenol supplementation in individuals with memory complaints," Exp. Gerontol., vol. 111, pp. 79–85, 2018.
- [43] F. A. Sorond *et al.*, "Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans," *Neuropsychiatr. Dis. Treat.*, vol. 4, no. 2, pp. 433–440, 2008.
- [44] J. P. E. Spencer, "Flavonoids: Modulators of brain function?," Br. J. Nutr., vol. 99, no. E-Suppl. 1, pp. ES60–ES77, 2008.
- [45] J. P. E. Spencer, "The impact of fruit flavonoids on memory and cognition," *Br. J. Nutr.*, vol. 104, no. S3, pp. S40–S47, 2010.
- [46] L. Tingö et al., "Whole-diet interventions and memory/cognition in healthy older adults: A systematic review," *Trends Geriatr. Healthc.*, vol. 8, no. 2, pp. 101–118, 2024.
- [47] M. Tsolaki *et al.*, "Pomegranate juice supplementation in Alzheimer's disease: A randomized controlled trial," *J. Alzheimers Dis.*, vol. 78, no. 4, pp. 1359–1370, 2020.
- [48] D. Vauzour *et al.*, "The neuroprotective potential of flavonoids: A multiplicity of effects," *Nutr. Res. Rev.*, vol. 21, no. 2, pp. 187–206, 2008.
- [49] D. Vauzour *et al.*, "Nutrition for the ageing brain: Towards evidence for an optimal diet," *Ageing Res. Rev.*, vol. 35, pp. 222–240, 2017.
- [50] A. R. Whyte, N. Cheng, E. Fromentin, and C. M. Williams, "A randomized, double-blinded, placebo-controlled study to investigate the effects of chronic wild blueberry supplementation on cognitive function in older adults," *Eur. J. Nutr.*, vol. 57, no. 6, pp. 2445–2457, 2018.
- [51] R. J. Williams, J. P. E. Spencer, and C. Rice-Evans, "Flavonoids: Antioxidants or signalling molecules?," *Free Radic. Biol. Med.*, vol. 36, no. 7, pp. 838–849, 2004.
- [52] World Health Organization, "Dementia," World Health Organization, 2023. [Online]. Available: <a href="https://www.who.int/news-room/fact-sheets/detail/dementia">https://www.who.int/news-room/fact-sheets/detail/dementia</a>

- [53] K. A. Youdim *et al.*, "Flavonoid permeability across an in situ model of the blood–brain barrier," *Free Radic. Biol. Med.*, vol. 36, no. 5, pp. 592–604, 2004.
- [54] K. A. Youdim, B. Shukitt-Hale, and J. A. Joseph, "Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects," *Free Radic. Biol. Med.*, vol. 37, no. 11, pp. 1683–1693, 2004.
- [55] Y. Zhang *et al.*, "Genistein as add-on therapy to cholinesterase inhibitors in mild-to-moderate Alzheimer's disease: A randomized, double-blind, placebo-controlled trial," *Nutrients*, vol. 13, no. 5, p. 1602, 2021.
- [56] Y. Zhang et al., "Anthocyanin supplementation improves cognition and reduces tau in older adults with early Alzheimer's pathology: A randomized trial," *Nutrients*, vol. 14, 2022.
- [57] L. Zhao et al., "Anthocyanins reduce A $\beta$  deposition and improve synaptic function in APP/PS1 mice," J. Neuroinflammation, vol. 17, no. 1, p. 264, 2020.