

Research Article

The Potential Of Citronella (*Cymbopogon nardus* (L.) Rendle) Essential Oil In Inhibiting The Formation Of *Escherichia coli* and *Candida albicans* Biofilms

Mentarry Bafadal^{1*}, Hasyru Hamzah^{2,4}, Supriatno Salam¹, Fajar Prasetya³

¹Department of Pharmacognosy and Medicinal Chemistry, Faculty of Pharmacy, Mulawarman University, Samarinda, East Borneo, Indonesia

²Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia

³Department of Pharmacology, Faculty of Pharmacy, Mulawarman University, Samarinda, East Borneo, Indonesia

⁴Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia

*Correspondence email : mentarrybafadal07@farmasi.unmul.ac.id

Abstract (in English)

Indonesia is a tropical country that has very high biodiversity, one of which is the citronella plant (*Cymbopogon nardus* (L.) Rendle). Citronella leaves have a strong distinctive aroma and essential oils are odorous compounds found in the plant. This study aims to identify the components of compounds in essential oils in citronella oil and the potential for antibiofilm against *Escherichia coli* and *Candida albicans*. Essential oils were obtained through a distillation process. Furthermore, they were tested in four concentration series (0.125%; 0.25%; 0.5%; 0.1%) to measure the activity of the ability to inhibit the formation of *E. coli* and *C. albicans* biofilms using the microdilution method. The results of the antibiofilm test were analyzed based on optical density to calculate the percentage of inhibition. Citronella essential oil with the highest concentration of 1% showed inhibition of biofilm formation against *E. coli* and *C. albicans* of 84% and 79% respectively. Citronella essential oil can inhibit the formation of *E. coli* and *C. albicans* biofilms.

Keywords: *Biofilm, Citronella, E. coli, C. albicans*

Accepted: 21 September 2025

Approved: 20 Oktober 2025

Publication: 16 November 2025

Citation : M. Bafadal, H. Hamzah, S. Salam, F. Prasetya, "The Potential of Citronella (*Cymbopogon nardus* (L.) Rendle) Essential Oil in Inhibiting The Formation of *Escherichia coli* and *Candida albicans* Biofilms", Journal of Tropical Pharmacy and Chemistry (JTPC), vol. 9, no. 2, pp. 191-195 , Nov. 2025, doi: 10.30872/jtpc.v9i2.303

Copyright : © 2025, Journal of Tropical Pharmacy and Chemistry (JTPC). Published by Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia. This is an Open Access article under the CC-BY-NC License

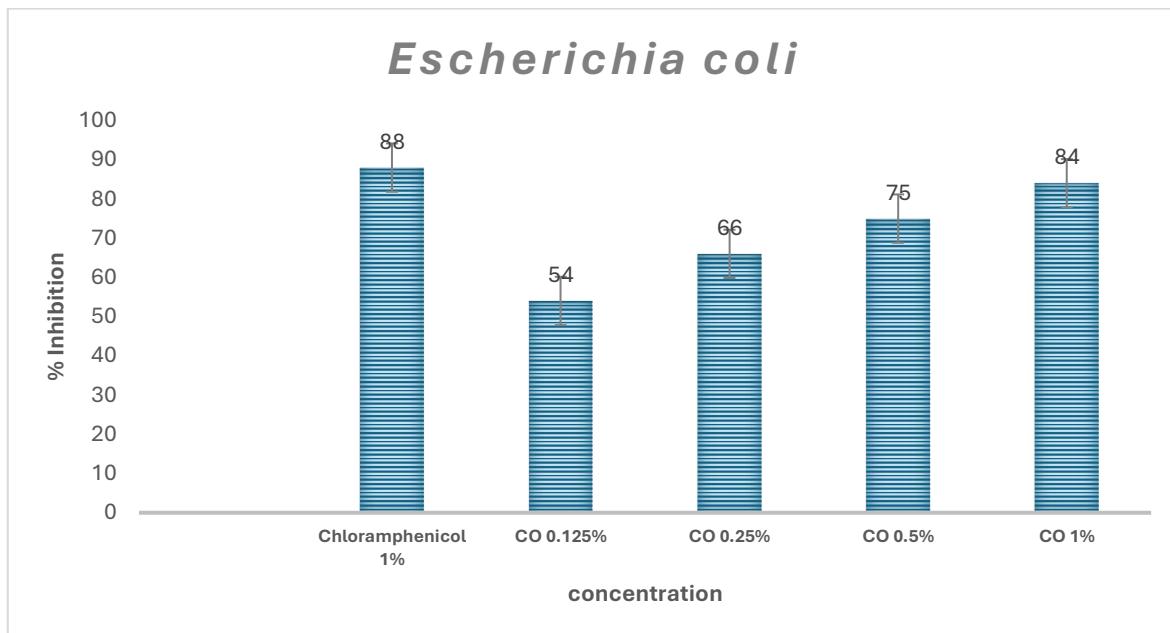
1 Introduction

Indonesia has a very large forest and consists of various natural resources that can be used as a source of traditional medicine. According to WHO, the use of traditional medicine and natural medicines by people in developed countries reaches 65%, and about half of the population in Indonesia still uses traditional medicine in the form of herbal medicine. One type of natural ingredient that is often used as a traditional medicine is citronella (*Cymbopogon nardus*) because it contains Geraniol, citronellal, and citronellol which can provide antibacterial effects [1],[2],[3].

The citronella plant (*Cymbopogon nardus*) is a *geminus* variety and is often called Citronella grass. Essential oils of lemongrass roots and leaves show significant activity against bacteria such as *Staphylococcus aureus*, *Staphylococcus epidermidis*, and *Streptococcus pyogenes* and fungi such as *Candida albicans*, *Microsporum canis*, and *Trichophyton mentagrophytes*. Differences in antibacterial power of lemongrass can cause differences in the levels of components in the resulting lemongrass oil [4]. Biofilms are a health problem related to infection control, often found in cases of chronic infected wounds and in the use of implanted medical devices such as catheters and endotracheal tubes. Multispecies and dual-species biofilms are often less susceptible to antimicrobial agents than monospecies biofilms [3],[5],[6],[7],[8]

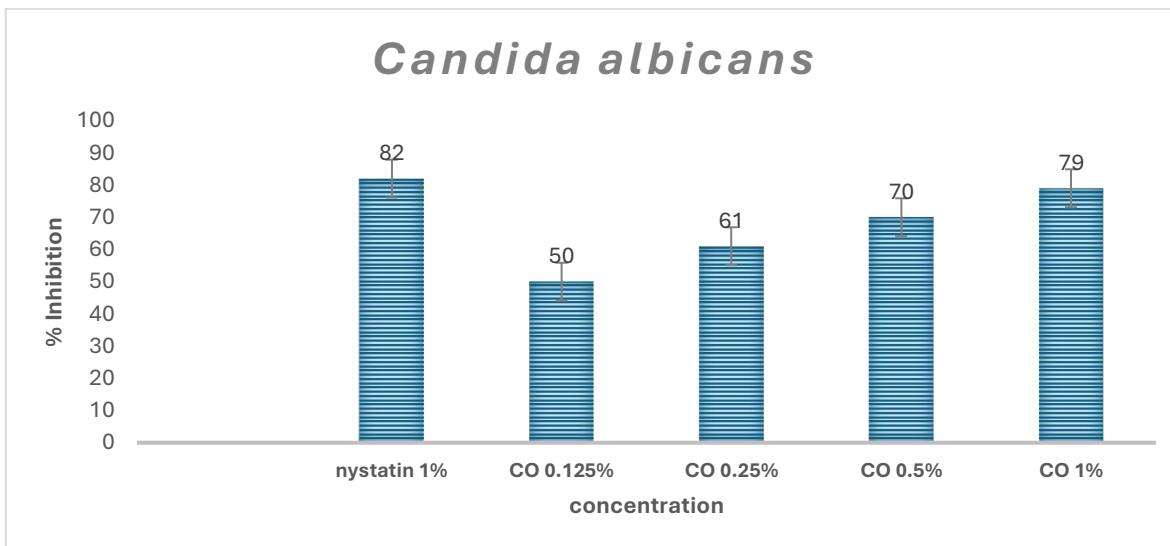
The multispecies community of microorganisms involved in biofilm formation and causing several diseases in humans includes Gram-positive bacteria (*Staphylococcus epidermidis* and *Staphylococcus aureus*), Gram-negative bacteria (*Pseudomonas aeruginosa* and *Escherichia coli*) and several from the genus *Candida* sp, especially *C. albicans* [4],[9],[10].

In this study, the effect of citronella essential oil (*Cymbopogon nardus*) on monospecies biofilms consisting of *E. coli*, and *C. albicans* fungi will be tested.


2 Method

2.1 Biofilm Formation Inhibition Test

A microtiter plate was utilized for the biofilm assay. Each well was filled with 100 μ L of microbial suspension, containing approximately 10^7 CFU/mL. Subsequently, 100 μ L of media with citronella oil at concentrations of 1% v/v, 0.5% v/v, 0.25% v/v, and 0.125% v/v was added to each well. The negative control consisted of a microbial suspension in the media, while chloramphenicol and nystatin served as positive controls. The plates were incubated at 37°C for 24 hours to observe the intermediate stages of biofilm formation. After rinsing the plates three times with distilled water, they were air-dried at room temperature for 5 minutes to remove excess water. Next, 125 mL of crystal violet solution (0.1% in distilled water) was added, and the plates were incubated at room temperature for 15 minutes. The wells were then gently rinsed three times with running water, and ethyl alcohol was added to each well. The optical densities (OD) were measured at 595 nm. The assays were performed in triplicate [7][11].


3 Result and Discussion

A biofilm inhibition test was performed to assess the impact of citronella essential oil concentration (*Cymbopogon nardus* L.) as an antibiofilm agent against *E. coli*, and *C. albicans*. The findings are illustrated in Figures 1 to 2. Chloramphenicol was used as the bacterial control, and nystatin served as the fungal control, both demonstrating biofilm inhibition of over 80% against *E. coli*, and *C. albicans*. According to the data in Figures 1 to 3, citronella essential oil exhibited the highest MIC_{80} at a concentration of 1% b/v. The average MIC value was nearly identical to that of the comparative control (chloramphenicol), while for *C. albicans*, the highest MIC_{80} was also observed at a concentration of 1% b/v.

Figure 1. Inhibition of Biofilm Formation of *E. coli*

Figure 1 Citronella essential oil can disrupt cell membranes and inhibit cytoplasmic metabolism, making it effective against both Gram-negative and Gram-positive bacteria. This oil has been shown to inhibit the growth of *E. coli*, *Bacillus subtilis*, *Salmonella enterica typhimurium*, *Staphylococcus aureus*, and *Klebsiella pneumoniae* [13][14].

Figure 2. Inhibition of Biofilm Formation of *C. albicans*

Figure 2 illustrates that citronella essential oil exhibits inhibitory activity against the formation of *C. albicans* fungal biofilm, with concentrations ranging from 0.125% to 1%, showing the highest inhibition of 79% at a 1% concentration. This is similar to the inhibition observed with the nystatin control, which inhibited 82% of *C. albicans* biofilm formation. Several studies have also indicated that citronella essential oil is capable of inhibiting and killing the growth of various species within the *Candida* spp genus [1][15]. Citronella essential oil likely interacts with the cell membrane, but not with the cell wall, demonstrating strong antifungal and antibiofilm activity in vitro against *C. albicans* [11].

Essential oils, including those derived from plants such as *Cymbopogon nardus* (citronella), can inhibit the formation of biofilms in bacteria and fungi through several mechanisms [16]. One mechanism is by

disrupting cell membranes, as essential oils generally contain compounds like terpenoids and phenols that can interact with the lipid layers of microbial cell membranes [17]. This interaction damages the membrane integrity, leading to leakage of cellular contents, which ultimately reduces the microorganism's ability to form and maintain biofilms. Additionally, essential oils can inhibit quorum sensing systems in bacteria and fungi[11] [18]. Quorum sensing is a communication process among microorganisms that coordinates biofilm formation and other behaviors [19]. By blocking this communication, essential oils can prevent the initiation or development of biofilm formation[20]. Essential oils can also alter microbial metabolic processes, including the production of extracellular substances (EPS) that are crucial for the structural stability of biofilms[19]. By inhibiting these pathways, essential oils reduce the ability of bacteria and fungi to form mature biofilms. Some essential oils also possess antioxidant properties that help reduce oxidative stress in microorganisms, weakening their ability to thrive in biofilm-forming environments [21].

4. Conclusion

This study concludes that citronella essential oil is effective in inhibiting the formation of biofilms by both bacteria and fungi. The oil demonstrated a strong inhibitory effect during the early stages of biofilm formation for *E. coli*, and *C. albicans*. These results are comparable to those of the control agents, chloramphenicol and nystatin, which also inhibited biofilm formation.

5. Declarations

5.1 Acknowledgements

The authors would like to thank the financial support provided by the Faculty of Pharmacy, Mulawarman University (Research Grant 2023).

5.2 Author contributions

The authors contributed to this study as follows: Mentarry Bafadal conceptualized the research, conducted data analysis, and drafted the manuscript. Hasyrl Hamzah carried out the data collection and experimental procedures. Supriatno Salam validated the data and critically reviewed the manuscript content. Fajar Prasetya conducted the literature review and contributed to the refinement of the final manuscript.

5.3 Conflict of Interest

The authors declare that there is no conflict of interest related to the conduct and publication of this research

5.4 Funding Statement

This research was financially supported by the Faculty of Pharmacy, Mulawarman University through the Research Grant 2023.

6. Bibliography

- [1] P. A. de S. Rolim *et al.*, "Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (*Cymbopogon nardus*) Associated with Phenethyl Ester of Caffeic Acid (CAPE)," *Cosmetics*, vol. 11, no. 5, 2024, doi: 10.3390/cosmetics11050162.
- [2] M. F. C. S. &Luciano M. Priscilla Moreira Curtis Peixoto, Armando Aparecida Júlio, Ester Gonçalves de Jesus, Aldino Neto Venancio, Luciana Alves Parreira, "Fungicide potential of citronella and tea tree essential oils against tomato cultivation's phytopathogenic fungus *Fusarium oxysporum* f. sp. *lycopersici* and analysis of their chemical composition by GC/MS," *Nat. Prod. Res.*, vol. 38, no. 4, 2024.
- [3] A. C. S. &Ramesh K. S. Ankita Maurya, Himanshu Yadav, Richa Sharma, Anoop Kumar Verma, Durga Prasad Mindala, "No Antifungal efficacy and phytochemical characterization of citronella (*Cymbopogon winterianus* Jowitt ex Bor) essential oil against fungal pathogens causing severe diseases in

Mentha arvensis L. Title," *J. Essent. Oil Bear. Plants*, vol. 27, 2024.

[4] S. Dangol *et al.*, "Essential Oil Composition Analysis of *Cymbopogon* Species from Eastern Nepal by GC-MS and Chiral GC-MS, and Antimicrobial Activity of Some Major Compounds," *Molecules*, vol. 28, no. 2, 2023, doi: 10.3390/molecules28020543.

[5] M. O. P. 1 Andreia Patrícia Magalhães 1, Paula Jorge 1, "Pseudomonas aeruginosa and *Staphylococcus aureus* communication in biofilm infections: insights through network and database construction," *Crit. Rev. Microbiol.*, vol. 45, no. 5–6, 2019.

[6] H. Hamzah, U. Muhammadiyah, K. Timur, T. Hertiani, and U. G. Mada, "Efficacy Of C-10 Massoialactone against-Multispecies Microbial Biofilm," no. June, 2022, doi: 10.33263/BRIAC123.34723487.

[7] M. Bafadal, T. Hertiani, S. U. T. Pratiwi, and A. C. Narsa, "Exploring The Inhibitory Potential of Massoia Oil on Biofilm Dual-Species Culture of *Staphylococcus aureus* and *Pseudomonas aeruginosa*," *Egypt. J. Chem.*, vol. 66, no. 8, pp. 185–190, 2023, doi: 10.21608/ejchem.2022.169290.7100.

[8] Y. Luo and Y. Song, "Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities," *Int. J. Mol. Sci.*, vol. 22, no. 21, 2021, doi: 10.3390/ijms222111401.

[9] H. Hamzah, T. Hertiani, S. Utami, T. Pratiwi, and T. Nuryastuti, "The bioilm eradication activity of C-10 massoialactone against *Staphylococcus aureus*," *Int. J. Res. Pharm. Sci.*, no. October, 2020, doi: 10.26452/ijrps.v11i4.3228.

[10] H. Hamzah, U. Muhammadiyah, K. Timur, T. Hertiani, and U. G. Mada, "Efek Saponin Terhadap Penghambatan Planktonik Dan Mono-Spesies Biofilm *Candida albicans* ATCC 10231 Pada Fase Pertengahan , Pematangan Dan Efek Saponin Terhadap Penghambatan Planktonik Dan Mono-Spesies Biofilm *Candida albicans* ATCC 10231 Pada Fase Pertenga," no. May, 2021, doi: 10.22146/farmaseutik.v17i2.54444.

[11] L. A. Trindade *et al.*, "The antifungal and antibiofilm activity of *Cymbopogon nardus* essential oil and citronellal on clinical strains of *Candida albicans*," *Brazilian J. Microbiol.*, pp. 1231–1240, 2022, doi: 10.1007/s42770-022-00740-2.

[12] L. S. Wei and W. Wee, "Chemical composition and antimicrobial activity of *Cymbopogon nardus* citronella essential oil against systemic bacteria of aquatic animals," *Iran. J. Microbiol.*, vol. 5, no. 2, pp. 147–152, 2013.

[13] M. Mukarram *et al.*, "Lemongrass essential oil components with antimicrobial and anticancer activities," *Antioxidants*, vol. 11, no. 1, pp. 1–23, 2022, doi: 10.3390/antiox11010020.

[14] A. Activities, D. Dantas, D. O. Alencar, E. L. De Souza, and E. Thayse, "Microencapsulation of *Cymbopogon citratus* D.C. Staph Essential Oil with Spray Drying: Development, Characterization, and Antioxidant and Antibacterial Activities," 2022.

[15] L. F. De Paiva, A. B. A. Teixeira-Loyola, T. B. Schnaider, A. C. De Souza, L. M. Zacaroni Lima, and D. R. Dias, "Association of the essential oil of *Cymbopogon citratus* (DC) Staph with nystatin against oral cavity yeasts," *An. Acad. Bras. Cienc.*, vol. 94, no. 1, pp. 1–13, 2022, doi: 10.1590/0001-3765202220200681.

[16] S. G. and R. R. R. Dibyajit Lahiri, Moupriya Nag, "The Chemistry of Antibiofilm Phytocompounds," *Mini-Reviews Med. Chem.*, vol. 21, no. 9, 2021.

[17] F. Ben Abdallah, R. Lagha, and A. Gaber, "Biofilm inhibition and eradication properties of medicinal plant essential oils against methicillin-resistant *staphylococcus aureus* clinical isolates," *Pharmaceuticals*, vol. 13, no. 11, pp. 1–15, 2020, doi: 10.3390/ph13110369.

[18] N. F. B. Sharifi A, "Selected plant essential oils inhibit biofilm formation and luxS- and pfs-mediated quorum sensing by *Escherichia coli* O157:H7.," *Lett Appl Microbiol*, 2022.

[19] M. Khosakueng, S. Taweechaisupapong, W. Boonyanugomol, P. Prapatpong, S. Wongkaewkhiaw, and S. Kanthawong, "Cymbopogon citratus L. essential oil as a potential anti-biofilm agent active against antibiotic-resistant bacteria isolated from chronic rhinosinusitis patients," *Biofouling*, vol. 40, no. 1, pp. 26–39, 2024, doi: 10.1080/08927014.2024.2305387.

[20] W. R. Li, T. H. Zeng, Z. Q. Zhang, Q. S. Shi, and X. B. Xie, "Geraniol attenuates virulence factors

by inhibiting quorum sensing of *Pseudomonas aeruginosa*,” *Front. Microbiol.*, vol. 14, no. April, pp. 1–10, 2023, doi: 10.3389/fmicb.2023.1190619.

[21] W. Rhimi *et al.*, “Antifungal, Antioxidant and Antibiofilm Activities of Essential Oils of *Cymbopogon* spp.,” *Antibiotics*, vol. 11, no. 6, pp. 1–13, 2022, doi: 10.3390/antibiotics11060829.