Microwave Assisted Synthesis of BenzilideneBenzylamine and Its Acetylcholinesterase and Butyrylcholinesterase Activity

Authors

  • Himayat Ullah Govt. Post Graduate College Mardan, kp, Pakistan Author
  • Khair Zaman Department of Organic Chemistry, Abdul Wali Khan University Mardan KP Pakistan Author
  • Muhammad Ismail Department of Organic Chemistry, Abdul Wali Khan University Mardan KP Pakistan Author

DOI:

https://doi.org/10.30872/j.trop.pharm.chem.v5i2.177

Keywords:

BenzilideneBenzylamine, Microwave irradiation, Butyrylcholinesterase, Acetylcholinesterase, TLC

Abstract

BenzilideneBenzylamine the derivative of Schiff bases contain azomethine group already used widely for industrial purposes and have wide range of biological activities. Benzilidene Benzylamine were synthesized by microwave irradiation reacting different aromatic and aniline purified pure crystal, 85% yield obtained reaction monitor by TLC. The Anticholinesterase activity utilized spectrophotometric Ellman assay for determination of butyrylcholinesterase and acetylcholinesterase. The synthesis compound 1 – 6 showed a wide range of inhibitory activity the compound 3((E)-N-(4-fluorobenzylidene)aniline) at 1000µg/mL, 71.62±0.74 percent inhibitory acetylcholinesterase potential while compound 6 ((E)-4 ((phenylimino)methyl) benzaldehyde) at 500 and 1000 µg/mL at IC50 show 71.68±0.22, 77.84±0.32 percent inhibitory potential comparatively greater than standard Galanthamine at 62.5µg/mL, 74.10±0.90 at IC50. The butyrylcholinesterase activity of compound 6 ((E)-4 ((phenylimino)methyl)benzaldehyde) at 1000 µg/mL, show 75.83±1.07 percent inhibitory potential which is similar to standard compound at 62.5µg/mL concentration of 75.45±0.90 percent butyrylcholinesterase inhibitory activity.

References

1. Akhtar, M.N.; Lam, K.W.; Abas, F.; Ahmad, M.S.; Shah, S.A.A.; Atta-ur-Rahman, M.; Choudhary, I.; Lajis, N.H. New class of acetylcholinesterase inhibitors from the stem bark of Knema laurinaand their structural insights. Bioorg. Med. Chem. Lett. 2011, 21, 4097-4103.

2. Kennedy, D.O.; Dodd, F.L.; Robertson, B.C.; Okello, E.J.; Reay, J.L.; Scholey, A.B.; Haskell, C.F. Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J. Psychopharmacol. 2010, doi: 10.1177/0269881110385594.

3. Camps, P.; Formosa, X.; Galdeano, C.; Gómez, T.; Munoz-Torrero, D.; Ramirez, L.; Viayna, E.; Gomez, E.; Isambert, N.; Lavilla, R.; et al.Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates. Chem. Biol. Interact.2010, 187, 411-415.

4. Walsh R, Rockwood K, Martin E, Darvesh S: Synergistic inhibition ofbutyrylcholinesterase by galantamine and citalopram.Biochim Biophys Acta2011, 1810:1230–1235.

5. Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T: Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer?-amyloid peptide in rodent.Proc Natl Acad Sci USA2005, 102:17213–17218.

6. Furukawa-Hibi Y, Alkam T, Nitta A, Matsuyama A, Mizoguchi H, Suzuki K,Moussaoui S, Yu QS, Greig NH, Nagai T:Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-[beta] peptide in mice.Behav Brain Res2011,1:222–229

7. Darvesh S, Cash MK, Reid GA, Martin E, Mitnitski A, Geula C: Butyrylcholinesterase is associated with?-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease.

J Neuropathol Exp Neurol2012, 71:2–14

8. Pisoni, D.S.; Costa, J.S.; Gamba, D.; Petzhold, C.L.; Borge, A.A.; Ceschi, M.A.; Lunardi, P.; Goncalves, C.A.S. Synthesis and AChE inhibitory activity of new chiral tetrahydroacridine analogues from terpenic cyclanones. Eur. J. Med. Chem. 2010, 45, 526-535.

9. Gholivand, K.; Hosseini, Z.; Farshadian, S.; Naderi-Manesh, H. Synthesis, characterization, oxidative degradation, antibacterial activity and cetylcholinesterase/butyrylcholinesterase inhibitory effects of some new phosphorus(V) hydrazides. Eur. J. Med. Chem. 2010, 45, 5130-5139.

10. Zarotsky, V.; Sramek, J.J.; Cutler, N.R. Galantamine hydrobromide: An agent for Alzheimer’s disease. Am. J. Health-Syst. Pharm. 2003, 60, 446-452.

11. Filomena, C.; Silvio, S.; Mariangela, M.; Federica, M.; Giancarlo, A.S.; Dimitar, U.; Aurelia, T.; Francesco, M.; Roberto, D.L. In vivoanti-inflammatory andin vitroantioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 2008, 116, 144-151.

12. Turiiski, V.I.; Krustev, A.D.; Sirakov, V.N.; Getova, D.P. In vivoand in vitrostudy of the influence of the anticholinesterase drug galantamine on motor and evacuative functions of rat gastrointestinal tract. Eur. J. Pharmacol. 2004, 498, 233-239.

13. Ndhlala, A.R.; Moyo, M.; Staden, J.V. Natural antioxidants: Fascinating or mythical biomolecules?Molecules 2010, 15, 6905-6930.

14. Axelsen, P.H.; Harel, M.; Silman, I.; Sussman, J.L. Structure and dynamics of the active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and X-ray crystallography.Protein Sci. 1994, 3, 188-197.

15. Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. ?-Amyloid aggregation induced by human acetylcholinesterase inhibition studies. Biochem. Pharmacol. 2003, 65, 407-416.

16. Loudon, G.M., in Organic chemistry. 2002, Oxford University Press: New York p. 1421.

17. Soreq, H. and S. Seidman, Acetylcholinesterase—new roles for an old actor. Nature Reviews Neuroscience, 2001. 2(4): p. 294-302.

18. Hall, R., Narcissistic Behavior in the Postmodern Era. 2011: Xlibris Corporation. 43.

19. Chatonnet, A. and O. Lockridge, Comparison of butyrylcholinesterase and acetylcholinesterase. Biochemical Journal, 1989. 260(3): p. 625.

20. Quinn, D.M., Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews, 1987. 87(5): p. 955-979.

21. Rand, J.B. Acetylcholine. 2007.

22. Prody, C.A., et al., Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proceedings of the National Academy of Sciences, 1987. 84(11): p. 3555-3559.

23. Dave, K.R., A.R. Syal, and S.S. Katyare, Tissue cholinesterases. A comparative study of their kinetic properties. Zeitschrift Fur Naturforschung C, 2000. 55(1/2): p. 100-108.

24. Ekholm, M., Predicting relative binding free energies of substrates and inhibitors of acetylcholin-and butyrylcholinesterases. Journal of Molecular Structure: Theochem, 2001. 572(1): p. 25-34.

25. Kalow, W. and R. Davies, 0.(1958) Biochem. Pharmacol. 1: p. 183-192.

26. Çoku?ra?, A.N., Butyrylcholinesterase: structure and physiological importance. Turk J Biochem, 2003. 28(2): p. 54-61.

27. Radic, Z., et al., Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochemistry, 1993. 32(45): p. 12074-12084.

Downloads

Published

2020-12-31

How to Cite

Microwave Assisted Synthesis of BenzilideneBenzylamine and Its Acetylcholinesterase and Butyrylcholinesterase Activity. (2020). Journal of Tropical Pharmacy and Chemistry , 5(2), 86–94. https://doi.org/10.30872/j.trop.pharm.chem.v5i2.177

Most read articles by the same author(s)