Nutrigenomics and Jamu: Integrating Nutritional Genomics with Indonesian Traditional Medicine for Precision, Preventive, and Systems-Oriented Health

Authors

  • Fajar Prasetya Faculty of Pharmacy, University of Mulawarman, Samarinda, Indonesia Author https://orcid.org/0000-0002-1020-0423
  • Linawati Hananta Atma Jaya Research & Teaching Hospital, Jakarta, Indonesia Author

DOI:

https://doi.org/10.30872/jtpc.v9i3.320

Keywords:

nutrigenomics; nutrigenetics; precision nutrition; Indonesian jamu; phytochemicals; multi-omics; gene expression; epigenetics; microbiome; systems pharmacology

Abstract

Nutrigenomics and nutrigenetics often grouped under nutritional genomics investigate how nutrients and bioactive food compounds modulate gene expression and related molecular phenotypes, and how genetic variation modifies individual responses to diet. These approaches are increasingly operationalized through multi‑omics (transcriptomics, epigenomics, metabolomics, proteomics, microbiomics) and data-driven dietary interventions, including randomized controlled trials in personalized nutrition. In parallel, Indonesian jamu an ancestral system of multi‑herb preparations used for health maintenance and symptom management represents a rich, under‑modeled source of phytochemical diversity and culturally embedded dietary practices. This review synthesizes evidence at the intersection of nutrigenomics and jamu by (1) outlining core concepts and methodological standards in nutritional genomics; (2) summarizing translational frameworks for connecting botanical complexity to molecular mechanisms using systems biology, network pharmacology, and multi‑omics; and (3) appraising representative jamu‑relevant botanicals (e.g., Curcuma longa, Zingiber officinale, Andrographis paniculata, Centella asiatica) for nutrigenomic effects on inflammatory, antioxidant, metabolic, and mitochondrial pathways. We propose an implementation pathway for “precision jamu nutrition” that aligns cultural acceptability with clinical governance, quality systems, and evidence hierarchies, emphasizing standardized extracts, rigorous phenotyping, genotype‑aware subgroup analyses, and safety monitoring. Key challenges include botanical variability, confounding from complex diets, population genetic diversity, limited prospective trials, and regulatory harmonization. Future research should prioritize pragmatic trials embedded in health services, mechanistic sub-studies leveraging omics, and equitable governance to prevent widening health disparities in precision nutrition.

Downloads

Download data is not yet available.

References

[1] J. Kaput and R. L. Rodriguez, “Nutritional genomics: The next frontier in the postgenomic era,” Physiol. Genomics, vol. 16, no. 2, pp. 166–177, 2004, doi: 10.1152/physiolgenomics.00107.2003.

[2] J. M. Ordovas and V. Mooser, “Nutrigenomics and nutrigenetics,” Curr. Opin. Lipidol., vol. 15, no. 2, pp. 101–108, 2004, doi: 10.1097/00041433-200404000-00002.

[3] C. Celis-Morales et al., “Effect of personalized nutrition on health-related behaviour change: Evidence from the Food4Me European randomized controlled trial,” Int. J. Epidemiol., vol. 46, no. 2, pp. 578–588, 2017, doi: 10.1093/ije/dyw186.

[4] K. M. Livingstone et al., “Personalised nutrition advice reduces intake of discretionary foods and beverages: Findings from the Food4Me randomised controlled trial,” Int. J. Behav. Nutr. Phys. Act., vol. 18, no. 1, p. 70, 2021, doi: 10.1186/s12966-021-01136-5.

[5] Elfahmi, H. J. Woerdenbag, and O. Kayser, “Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use,” J. Herbal Med., vol. 4, no. 2, pp. 51–73, 2014, doi: 10.1016/j.hermed.2014.01.002.

[6] N. Djaya, H. Kuncoro Tjen, D. Suprana, and F. Prasetya, “Aplikasi Farmakologis dan Formulasi Jamu sebagai Bahan Aktif dalam Produk Nutrasetikal dan Makanan Fungsional,” J. Sains. Kes., vol. 6, no. 2, pp. 101–115, Nov. 2025, doi: 10.30872/jsk.v6i2.840.

[7] Y.-J. Surh and H.-K. Na, “NF-κB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals,” Genes Nutr., vol. 2, no. 4, pp. 313–317, 2008, doi: 10.1007/s12263-007-0063-0.

[8] S. H. Zeisel, “A grand challenge for nutrigenomics,” Front. Genet., vol. 1, p. 2, 2010, doi: 10.3389/fgene.2010.00002.

[9] S. H. Zeisel, “Choline: Clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements,” J. Nutrigenet. Nutrigenomics, vol. 3, nos. 4–6, pp. 209–219, 2010, doi: 10.1159/000324357.

[10] F. Prasetya, Dasar Farmakologi, Kimia Medisinal, & Jamulogi. Jakarta: Elex Media Komputindo, Kompas Gramedia, 2024, ISBN: 9786230056697.

[11] S. Shishodia, “Molecular mechanisms of curcumin action: Gene expression,” BioFactors, vol. 39, no. 1, pp. 37–55, 2013, doi: 10.1002/biof.1041.

[12] W. S. Swatson, M. Katoh-Kurasawa, G. Shaulsky, and S. Alexander, “Curcumin affects gene expression and reactive oxygen species via a PKA dependent mechanism in Dictyostelium discoideum,” PLoS One, vol. 12, no. 11, e0187562, 2017, doi: 10.1371/journal.pone.0187562.

[13] M. S. Baliga et al., “Update on the chemopreventive effects of ginger and its phytochemicals,” Crit. Rev. Food Sci. Nutr., vol. 51, no. 6, pp. 499–523, 2011, doi: 10.1080/10408391003698669.

[14] T. Zhu et al., “Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB,” PLoS One, vol. 8, no. 2, e56407, 2013, doi: 10.1371/journal.pone.0056407.

[15] Y.-Y. Chen, M.-J. Hsu, J.-R. Sheu, C.-H. Lin, and G. Hsiao, “Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade,” Sci. World J., vol. 2014, p. 130381, 2014, doi: 10.1155/2014/130381.

[16] J. Cui, J. Liu, Y. Liu, J. Tian, and H. Wang, “Andrographolide sulfate inhibited NF-κB activation and alleviated pneumonia induced by poly I:C in mice,” J. Pharmacol. Sci., vol. 144, no. 4, pp. 189–196, 2020, doi: 10.1016/j.jphs.2020.08.005.

[17] R. S. Sangwan, S. Tripathi, J. Singh, L. K. Narnoliya, and N. S. Sangwan, “De novo sequencing and assembly of Centella asiatica leaf transcriptome,” Gene, vol. 525, no. 1, pp. 58–76, 2013, doi: 10.1016/j.gene.2013.04.057.

[18] L. Wan et al., “Integrated metabolome and transcriptome analysis identifies candidate genes involved in triterpenoid saponin biosynthesis in leaves of Centella asiatica,” Front. Plant Sci., vol. 14, p. 1295186, 2024, doi: 10.3389/fpls.2023.1295186.

[19] P. Kundu et al., “Centella asiatica promotes antioxidant gene expression and mitochondrial oxidative respiration in experimental autoimmune encephalomyelitis,” Pharmaceuticals, vol. 17, no. 12, p. 1681, 2024, doi: 10.3390/ph17121681.

Downloads

Published

2025-12-24

How to Cite

Nutrigenomics and Jamu: Integrating Nutritional Genomics with Indonesian Traditional Medicine for Precision, Preventive, and Systems-Oriented Health. (2025). Journal of Tropical Pharmacy and Chemistry , 9(3), 299-318. https://doi.org/10.30872/jtpc.v9i3.320

Similar Articles

21-30 of 63

You may also start an advanced similarity search for this article.