In Vitro Anti-bacterial Activities of Aqueous, Ethanol and Chloroform Crude Extracts of Olinia rochetiana and Vernonia myriantha
DOI:
https://doi.org/10.30872/j.trop.pharm.chem.v5i2.181Keywords:
Antibacterial activity, phytochemicals, crude extract, pathogenic bacteriaAbstract
In the past with the advent of antibiotics, bacterial diseases have been under control. However rapid spread of antibiotic-resistant this success is reversing and searching for newer antibacterial agents is currently a top priority. This study was, thus, aimed at assessing the anti-microbial activities of two traditional medicinal plants: Vernonia myriantha and Olinia rochetiana. The crude extracts were tested for their in vitro antibacterial activities and phytochemical content. The extracts were tested against selected 3 clinical and 4 standard test bacterial strains by using agar well-diffusion method and the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). The ethanol leaves and stem-bark extracts of O. rochetiana inhibited the growth of all bacterial strains at a concentration of 250mg/mL. The inhibition zones ranged from 20.33±0.57mm for clinical Pseudomonas aeruginosa to 25.66±0.57mm for standard Salmonella typhi strains. The values for these same extracts were 20.66±2.51mm and 24.33±1.15mm for standard P. aeruginosa and Staphylococcus aureus strains respectively. The chloroform extract was similarly effective against all of the strains with inhibition zones between 19.00±1.73mm against P. aeruginosa and 22.66±2.51mm for S. aureus. Comparatively, the ethanol extract of O. rochetiana had the highest MIC (7.81mg/mL) and MBC (62.50mg/mL) were noted against P. aeruginosa. On the other hand, chloroform extract of O. rochetiana leaf showed the highest MIC (15mg/mL) and MBC (125mg/mL) were recorded against P. aeruginosa. The ethanol extract of V. myriantha showed growth inhibition only on S. aureus (21.00±1.7mm). Both plants tested for terpenoids and glycosides showed positive result, but none for resin.
References
ANIBIJUWON, I., OLADEJO, B., ADETITUN, D., & KOLAWOLE, O. (2012). Antimicrobial activities of Vernonia amygdalina against oral microbes.
Babu, N., & Temesgen, O. A. (2015). Phytochemical Investigation and Antimicrobial Activities of Extract of Vernonia auriculifera Hiern Leaves. Haramaya University,
Beentje, H., Adamson, J., & Bhanderi, D. (1994). Kenya trees, shrubs, and lianas: National Museums of Kenya.
Bolla, J.-M., Alibert-Franco, S., Handzlik, J., Chevalier, J., Mahamoud, A., Boyer, G., . . . Pagès, J.-M. (2011). Strategies for bypassing the membrane barrier in multidrug resistant Gram?negative bacteria. FEBS letters, 585(11), 1682-1690.
Brantner, A., Maleš, Ž., Pepeljnjak, S., & Antoli?, A. (1996). Antimicrobial activity of Paliurus spina-christi Mill.(Christ's thorn). Journal of ethnopharmacology, 52(2), 119-122.
Fankam, A. G., Kuiate, J.-R., & Kuete, V. (2017). Antibacterial and antibiotic resistance modulatory activities of leaves and bark extracts of Recinodindron heudelotii (Euphorbiaceae) against multidrug-resistant Gram-negative bacteria. BMC complementary and alternative medicine, 17(1), 168.
Gagliotti, C., Balode, A., Baquero, F., Degener, J., Grundmann, H., Gür, D., . . . Monnet, D. (2011). Escherichia coli and Staphylococcus aureus: bad news and good news from the European Antimicrobial Resistance Surveillance Network (EARS-Net, formerly EARSS), 2002 to 2009. Eurosurveillance, 16(11), 19819.
Gibbs, R. D. (1974). Chemotaxonomy of Flowering Plants: Four Volumes: McGill-Queen's Press-MQUP.
Giday, M., Asfaw, Z., & Woldu, Z. (2009). Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. Journal of ethnopharmacology, 124(3), 513-521.
Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod, 59(2), 205-215.
Ijeh, I. I., & Ejike, C. (2011). Current perspectives on the medicinal potentials of Vernonia amygdalina Del. Journal of medicinal plants research, 5(7), 1051-1061.
Karunamoorthi, K., Jegajeevanram, K., Vijayalakshmi, J., & Mengistie, E. (2013). Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. Journal of Evidence-Based Complementary & Alternative Medicine, 18(1), 67-74.
Kazmi, M. H., Malik, A., Hameed, S., Akhtar, N., & Ali, S. N. (1994). An anthraquinone derivative from Cassia italica. Phytochemistry, 36(3), 761-763.
Kumar, A., Ilavarasan, R., Jayachandran, T., Decaraman, M., Aravindhan, P., Padmanabhan, N., & Krishnan, M. (2009). Phytochemicals investigation on a tropical plant, Syzygium cumini from Kattuppalayam, Erode district, Tamil Nadu, South India. Pakistan Journal of Nutrition, 8(1), 83-85.
Livermore, D. M. (2012). Current epidemiology and growing resistance of gram-negative pathogens. The Korean journal of internal medicine, 27(2), 128.
Lulekal, E., Asfaw, Z., Kelbessa, E., & Van Damme, P. (2013). Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara region, Ethiopia. Journal of ethnobiology and ethnomedicine, 9(1), 63.
Megersa, M., Asfaw, Z., Kelbessa, E., Beyene, A., & Woldeab, B. (2013). An ethnobotanical study of medicinal plants in Wayu Tuka district, east Welega zone of oromia regional state, West Ethiopia. Journal of ethnobiology and ethnomedicine, 9(1), 68.
Mugweru, F., Nyamai, D., Arika, W., Mworia, J., Ngugi, M., Njagi, E., . . . Kisangau, P. (2016). In Vivo Safety of Aqueous Extracts of Maytemus putterlickoides, Senna spectabilis and Olinia usambarensis on Mice Models. J Clinic Toxicol, 6(305), 2161-0495.1000305.
Muthee, J., Gakuya, D., Mbaria, J., Kareru, P., Mulei, C. M., & Njonge, F. (2011). Ethnobotanical study of anthelmintic and other medicinal plants traditionally used in Loitoktok district of Kenya. Journal of ethnopharmacology, 135(1), 15-21.
Namukobe, J., Kasenene, J. M., Kiremire, B. T., Byamukama, R., Kamatenesi-Mugisha, M., Krief, S., . . . Kabasa, J. D. (2011). Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda. Journal of ethnopharmacology, 136(1), 236-245.
Nikoli?, M., Vasi?, S., ?ur?evi?, J., Stefanovi?, O., & ?omi?, L. (2014). Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe)) ethanolic extract. Kragujevac Journal of Science(36), 129-136.
Omino, E., & Kokwaro, J. (1993). Ethnobotany of Apocynaceae species in Kenya. Journal of ethnopharmacology, 40(3), 167-180.
Organization, W. H. (2015). Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases 2015 (Vol. 3): World Health Organization.
Oxford, J., & Kozlov, R. (2013). Antibiotic resistance–a call to arms for primary healthcare providers. International Journal of Clinical Practice, 67, 1-3.
Sassi, A. B., Harzallah-Skhiri, F., & Aouni, M. (2007). Investigation of some medicinal plants from Tunisia for antimicrobial activities. Pharmaceutical Biology, 45(5), 421-428.
Serafini, M., Ghiselli, A., Ferro-Luzzi, A., & Melville, C. (1994). Red wine, tea, and antioxidants. The lancet, 344(8922), 626.
Srivastava, J., Lambert, J., & Vietmeyer, N. (2005). Medicinal plants: An expanding role in from Western India for potential antimicrobial activity. Indian journal of pharmacology, 37, 406-409.
Tadeg, H., Mohammed, E., Asres, K., & Gebre-Mariam, T. (2005). Antimicrobial activities of some selected traditional Ethiopian medicinal plants used in the treatment of skin disorders. Journal of ethnopharmacology, 100(1-2), 168-175.
Taylor, L. (2000). Plant based drugs and medicines. Rain tree Nutrition Inc, 1-5.
Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kaur, H. (2011). Phytochemical screening and extraction: a review. Internationale pharmaceutica sciencia, 1(1), 98-106.
Ulubelen, A., Topcu, G., Eri, C., Sönmez, U., Kartal, M., Kurucu, S., & Bozok-Johansson, C. (1994). Terpenoids from Salvia sclarea. Phytochemistry, 36(4), 971-974.