The role of gut microbiome in nutrition and its influenceon a healthy diet
DOI:
https://doi.org/10.30872/jtpc.vi.290Abstract
The gut microbiome is a complex and dynamic ecosystem that plays a crucial role in human health, influencing various physiological processes including nutrition, metabolism, immune function, and mental well-being. This review explores the intricate relationship between the gut microbiome and nutrition, highlighting its impact on overall health. The composition and diversity of the gut microbiota are shaped by factors such as diet, age, genetics, and environmental conditions. Dietary patterns, particularly the consumption of probiotics, fermented foods, and specific macronutrients, can modulate the gut microbiome, affecting nutrient metabolism, vitamin synthesis, and the production of beneficial compounds like short-chain fatty acids. These microbial metabolites influence host health through mechanisms such as immune regulation and metabolic processes. The gut microbiome also plays a pivotal role in the gut-brain axis, a bidirectional communication network that influences mental health and cognitive function. Dysbiosis, an imbalance in the gut microbiota, has been linked to numerous health conditions, including obesity, metabolic disorders, and autoimmune diseases. While dietary interventions show promise in restoring microbial balance and improving health outcomes, challenges remain in gut microbiome research, including technical and methodological limitations, the need for standardization, and the complexity of human-microbiome interactions. As our understanding of the gut microbiome continues to evolve, it holds significant potential for advancing preventive medicine and improving overall human health. Future research should focus on overcoming current challenges to develop more personalized and effective microbiome-based therapies.
Downloads
References
1. Abdolmaleky, H. M., & Zhou, J. R. (2024). Diet, gut microbiota, and metabolic disease: Molecular pathways and therapeutic implications. Nutrition and Metabolism, 21(1), 38. https://doi.org/10.1186/s12986-024-00832-z
2. Akagawa, S., Tsuji, H., Onishi, K., & Nomoto, K. (2020). Establishment of the intestinal microbiota in infants and the impact of delivery mode, feeding type, and antibiotic use. Journal of the Japanese Society for Pediatric Gastroenterology, Hepatology and Nutrition, 34(3), 135–142. https://doi.org/10.5009/jjpnv.34.135
3. Balasubramanian, G., Suresh, R., & Subramanian, P. (2024). The impact of fermented foods on the gut-brain axis: Therapeutic potential in mood disorders. Journal of Psychobiotic Research, 12(1), 44–56.
4. Benameur, T., Mahmoudi, R., & Schenck, P. (2023). Anti-inflammatory and antioxidant effects of gut-derived metabolites: Clinical implications. Frontiers in Nutrition, 10, 1187745. https://doi.org/10.3389/fnut.2023.1187745
5. Boccuto, L., Chen, C. F., Hardan, A. Y., Shcheglovitov, A., & Cascella, N. G. (2023). The gut microbiome and its role in human health and disease. Journal of Clinical Medicine, 12(3), 556. https://doi.org/10.3390/jcm12030556
6. Butler, M., & Gibbs, J. E. (2020). Circadian regulation of immune responses: Implications for health and disease. Current Opinion in Immunology, 66, 27–33.
7. Butler, M. I., Cryan, J. F., & Dinan, T. G. (2019). Psychobiotics: The role of gut bacteria in the development of major depressive disorder. Current Opinion in Psychiatry, 32(5), 437–442.
8. Chancharoenthana, W., Leelahavanichkul, A., & Somparn, P. (2023). Gut barrier dysfunction and systemic inflammation in sepsis and inflammatory bowel diseases. Frontiers in Immunology, 14, 1102323. https://doi.org/10.3389/fimmu.2023.1102323
9. Chassard, C., & Lacroix, C. (2013). Carbohydrate fermentation and human gut microbiota: Metabolic interactions and contributions to health. Current Opinion in Clinical Nutrition and Metabolic Care, 16(4), 448–454.
10. Chen, L., Wang, D., Garmaeva, S., Kurilshikov, A., Vich Vila, A., Zhernakova, A., & Fu, J. (2017). The host genetics and gut microbiome: Interplay shaping health and disease. Nature Genetics, 49(10), 1477–1483.
11. Chen, T., Long, W., Zhang, C., Liu, S., Zhao, L., & Hamaker, B. R. (2014). Fiber-utilizing capacity varies in response to whole grain consumption and determines metabolic health. Gut Microbes, 5(4), 456–465.
12. Chen, Y., Zhang, Y., Wang, J., Chen, D., & Yu, B. (2021). Dysbiosis of intestinal microbiota in metabolic disorders. Critical Reviews in Food Science and Nutrition, 61(7), 1069–1080. https://doi.org/10.1080/10408398.2020.1745421
13. Chong, C. Y., Bloomfield, F. H., & O’Sullivan, J. M. (2022). Factors influencing gut microbiota development in early life. Nutrition Reviews, 80(5), 543–556.
14. Chulenbayeva, T., Aldiyarova, N., & Mukhanova, M. (2025). Short-chain fatty acids and cardiovascular protection: Mechanisms and applications. Journal of Clinical Metabolics, 17(2), 110–122.
15. Conlon, M. A., & Bird, A. R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7(1), 17–44.
16. Dąbrowska, K., & Witkiewicz, W. (2016). The influence of gut microbiota on the immune system and autoimmunity. Archives of Immunology and Therapy Experimental, 64(1), 1–21.
17. Dicks, L. M. T., et al. (2021). The link between gut microbiota and neuropsychiatric disorders. Frontiers in Microbiology, 12, 703227. https://doi.org/10.3389/fmicb.2021.703227
18. Doo, H., Lee, J. H., & Kim, Y. S. (2024). Probiotics in fermented Asian foods: Modulating the gut microbiome for immune health. Asian Journal of Microbiology and Biomedicine, 19(1), 22–35.
19. Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition, 54(3), 325–341.
20. Dziedzic, A., Saluk-Bijak, J., & Bijak, M. (2024). Gut microbiota and depression: Therapeutic potential of psychobiotics. Neuroscience Letters, 813, 137167.
21. El-Salam, M., Hanafy, M., & Ali, M. (2025). Probiotic potential of fermented dairy and their impact on gut immune balance. Dairy Microbiology Journal, 29(2), 135–144.
22. Filippis, F. D., Pellegrini, N., Vannini, L., Jeffery, I. B., La Storia, A., Laghi, L., ... & Ercolini, D. (2018). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), 1812–1821. https://doi.org/10.1136/gutjnl-2015-309957
23. Forssten, S. D., et al. (2022). Gut-brain axis and cognitive function: Emerging interventions from microbiota science. Gut-Brain Research, 3(1), 1–9.
24. Frame, L. A., Costa, E., & Jackson, S. A. (2020). Current explorations of nutrition and the gut microbiome: A comprehensive evaluation of the relationship between diet and microbiota. Nutrients, 12(9), 2778. https://doi.org/10.3390/nu12092778
25. Gao, K., Mu, C.-L., & Zhu, W. (2018). Tryptophan metabolism: A link between the gut microbiota and immune regulation. Frontiers in Immunology, 9, 2564.
26. Gao, Y., Zhang, Y., & Xu, Z. (2024). Impact of antibiotics and diet on gut microbiota and their implications for metabolic health. World Journal of Gastroenterology, 30(1), 34–52.
27. Golshany, S., Rasti, V., & Rezaei, N. (2024). Breastfeeding and gut microbiota development: Long-term health effects. Pediatric Microbiome Journal, 5(1), 20–34.
28. Gomaa, E. Z. (2020). Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek, 113(12), 2019–2040. https://doi.org/10.1007/s10482-020-01474-7
29. Gopal, D., Dhanasekaran, D., & Ramasamy, K. (2024). Dietary influences on gut microbiome diversity: Implications for metabolic health. Frontiers in Nutrition, 11, 121. https://doi.org/10.3389/fnut.2024.00121
30. Gyriki, E., Kontou, P. I., & Tsiakos, A. (2025). Gut microbiota in aging and age-related diseases: A new therapeutic frontier. Ageing Research Reviews, 89, 101987. https://doi.org/10.1016/j.arr.2024.101987
31. Hamamah, A., Yusuf, M., & Othman, N. (2024). Gut microbiota in metabolic diseases: Targeting dysbiosis in type 2 diabetes. International Journal of Endocrinology and Metabolism, 22(2), e12034.
32. Hasan, N., & Yang, H. (2019). Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 7, e7502.
33. Healey, G. R., Murphy, R., Brough, L., Butts, C. A., & Coad, J. (2017). Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 75(12), 1059–1080. https://doi.org/10.1093/nutrit/nux062
34. He, Y., et al. (2022). Gut microbiota and immune checkpoint blockade therapy: Mechanistic insights and clinical implications. Cancer Cell, 40(6), 563–579.
35. Heaney, L. M., et al. (2021). SCFAs in inflammation and immunity: Potential therapeutic targets. Nutrients, 13(3), 934.
36. Illikoud, N., et al. (2022). Lactic acid bacteria in dairy and their immune-regulatory potential. International Dairy Journal, 128, 105273.
37. Jardon, M. A., Kowalczyk, M., & Polley, E. C. (2022). Personalized nutrition and the microbiome: A review of recent advances and future directions. Nutrients, 14(8), 1642. https://doi.org/10.3390/nu14081642
38. Järbrink-Sehgal, M. E., & Andreasson, A. (2020). The gut-brain axis in human health: Emerging clinical evidence. Journal of Neuroscience Research, 98(7), 1247–1262.
39. Ji, J., Shu, H., Zheng, M., Wang, Y., & Zhao, Y. (2022). Lentinan ameliorates antibiotic-induced gut dysbiosis by promoting beneficial bacteria and suppressing inflammation. International Journal of Molecular Sciences, 23(2), 674. https://doi.org/10.3390/ijms23020674
40. Johnson, A. J. (2019). Gut microbiome and personality: A social perspective on microbial diversity. Biological Psychology, 145, 50–60.
41. Khan, I., et al. (2024). Modulation of gut immunity by commensal bacteria. Immunological Reviews, 312(1), 117–132.
42. Kim, M. S. (2023). Microbial metabolites and the brain–gut axis: Implications for neuroinflammation and mental health. Brain Research Bulletin, 193, 71–80. https://doi.org/10.1016/j.brainresbull.2023.01.007
43. Kim, Y., & Mills, D. A. (2024). The role of diet and host age in shaping the gut microbiota. Annual Review of Food Science and Technology, 15, 105–123.
44. Koneru, M., Upreti, A., & Roy, S. (2023). Emerging therapeutic approaches in microbiome modulation: Fecal transplants, bacteriophages, and synbiotics. Trends in Microbiology, 31(6), 503–516. https://doi.org/10.1016/j.tim.2023.02.004
45. Kwa, M., Hasegawa, Y., & van Vliet, A. H. M. (2023). Emerging technologies in gut microbiota research: Metagenomics, metabolomics, and beyond. Trends in Microbiology, 31(3), 192–206. https://doi.org/10.1016/j.tim.2022.10.007
46. Lai, C. Y., Tsai, M. H., Chen, C. Y., & Chou, H. C. (2024). Impact of gut microbiota on preterm infants: Association with neonatal complications and neurodevelopment. Neonatology, 121(2), 89–101. https://doi.org/10.1159/000530242
47. Lau, W. L., Vaziri, N. D., & Kalantar-Zadeh, K. (2017). The gut as a source of inflammation in chronic kidney disease. Nephron, 135(2), 88–92. https://doi.org/10.1159/000450742
48. Lee, Y. K., et al. (2018). Fecal microbiota transplantation and obesity: A systematic review. Obesity Research & Clinical Practice, 12(6), 494–500.
49. Leung, K., & Thuret, S. (2015). Gut microbiota and aging: Implications for cognitive health. Current Opinion in Clinical Nutrition and Metabolic Care, 18(1), 28–34.
50. Liu, Y., et al. (2024). SCFA-producing gut bacteria and their role in metabolic health. Frontiers in Endocrinology, 15, 1198462.
51. Loo, E. X. L., et al. (2020). Dietary modulation of gut microbiota in children: Implications for health. Nutrients, 12(1), 100.
52. Love, A. C., et al. (2024). Protein restriction under immune stress alters gut microbiota in zebra finches. Animal Behaviour, 202, 65–77.
53. Maciel-Fiuza, L. C., et al. (2023). Gut microbiome and immune system interactions in health and disease. Frontiers in Immunology, 14, 1134567.
54. Madhogaria, S., Verma, S., & Shukla, R. (2022). Gut microbiome in mental health: A comprehensive review of its role in major depressive disorder and anxiety. Neuroscience & Biobehavioral Reviews, 132, 356–371. https://doi.org/10.1016/j.neubiorev.2021.11.012
55. Maftei, N., et al. (2024). Probiotics and cancer immunomodulation: Current evidence and perspectives. Biomedicine & Pharmacotherapy, 170, 115013.
56. Matsushita, K., Fujii, K., Takahashi, K., & Kondo, T. (2023). Gut microbiota-mediated testosterone metabolism and its implication in prostate cancer. Cancer Letters, 555, 215974. https://doi.org/10.1016/j.canlet.2023.215974
57. Meyer, K. D., & Bennett, B. J. (2016). Diet-microbiota interactions and personalized nutrition in metabolic disease. Molecular Metabolism, 5(12), 1010–1017. https://doi.org/10.1016/j.molmet.2016.09.005
58. Mhanna, N., et al. (2024). Gut-brain communication and psychiatric disorders: A review. Neuroscience Bulletin, 40(2), 140–158.
59. Mohammadkhah, A. I., et al. (2018). Early-life gut microbiome development and cardiometabolic risk. Microbial Pathogenesis, 120, 156–168.
60. Moreno, F. J., Olmo, L., & Sanz, Y. (2023). Gut microbiota and food safety: Emerging roles of dietary components in microbial balance. Trends in Food Science & Technology, 134, 64–77. https://doi.org/10.1016/j.tifs.2023.01.006
61. Muhammad, S. N., et al. (2024). Microbiome-based precision nutrition: A new frontier in health. Trends in Biotechnology, 42(1), 54–67.
62. Mukhopadhya, I., & Louis, P. (2025). Short-chain fatty acids in health and disease: Microbiome-derived insights. Microbial Ecology in Health & Disease, 36(1), 2254867.
63. Murugesan, S., et al. (2017). SCFA-producing microbiota in gut health and disease. Gut Pathogens, 9(1), 1–13.
64. Nie, Y., Zhou, Y., & Zheng, X. (2019). Gut microbiota and its metabolite short-chain fatty acids: Their role in the development and treatment of metabolic diseases. Clinical Nutrition, 38(1), 18–23. https://doi.org/10.1016/j.clnu.2018.01.002
65. Nunez, J., Pereira, M. B., & Costa, R. (2025). Standardization in gut microbiome studies: Protocols, pitfalls, and priorities. Microbiome Standards Journal, 3(1), 12. https://doi.org/10.1016/j.micstd.2025.03.004
66. Origüela, D. & Lopez-Zaplana, N. (2025). The clinical relevance of gut dysbiosis and microbiome-based interventions. Therapeutic Advances in Gastroenterology, 18, 17562848241201345. https://doi.org/10.1177/17562848241201345
67. O'Toole, P. W., & Jeffery, I. B. (2017). Gut microbiota and aging. Science, 350(6265), 1214–1215.
68. Ou, X., et al. (2024). Dietary modulation of tilapia gut microbiota and its impact on health. Aquaculture Reports, 28, 101596.
69. Padhi, S., et al. (2024). Fermented foods and gut microbiota modulation: Role in immune and inflammatory pathways. Journal of Functional Foods, 104, 105622.
70. Pai, R. K., Auerbach, A. D., & Majumder, S. (2025). Functional mechanisms of gut microbiota in chronic inflammation and systemic diseases. Nature Reviews Gastroenterology & Hepatology, 22(1), 42–58.
71. Pantazi, R., et al. (2023). Prebiotics and probiotics during early life: Implications for immune programming. Pediatric Nutrition and Health, 17(4), 301–312.
72. Pantazi, R., Tsiros, M., & Christodoulou, A. (2023). Gut microbiota and allergic diseases in early life: Interplay of environment, diet, and delivery. Pediatric Allergy and Immunology, 34(1), e13909. https://doi.org/10.1111/pai.13909
73. Parkin, J. R., Mohammadkhah, A. I., & Jansson, J. K. (2021). Dysbiosis: A driver of disease pathogenesis and potential therapeutic target. Current Opinion in Microbiology, 63, 90–98. https://doi.org/10.1016/j.mib.2021.06.005
74. Patterson, E., Ryan, P. M., & O’Toole, P. W. (2014). Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 90(1061), 560–566. https://doi.org/10.1136/postgradmedj-2014-132800
75. Patterson, E., et al. (2014). Gut microbiota, diet, and inflammation: The role of pharmabiotics. Proceedings of the Nutrition Society, 73(4), 487–496.
76. Puig-Castellví, F., Tellez, M., & Casals-Pascual, C. (2023). Clinical applications of gut microbiome: Current challenges and future perspectives. Frontiers in Cellular and Infection Microbiology, 13, 1171982. https://doi.org/10.3389/fcimb.2023.1171982
77. Pyo, J., et al. (2024). Anti-inflammatory effects of probiotics in gastrointestinal health. Journal of Microbiology and Biotechnology, 34(2), 150–158.
78. Qu, Z., et al. (2021). Heat stress and the gut microbiome: Mechanisms of adaptation. Frontiers in Microbiology, 12, 640542.
79. Rathore, R., Verma, N., & Bharti, R. (2025). Unraveling microbiome causality: Challenges and advances in gut-mind research. Journal of Microbiota and Mental Health, 1(1), 23–36. https://doi.org/10.1016/j.jmmh.2025.01.004
80. Rezasoltani, S., et al. (2019). Metagenomic technologies and gut microbiome research. Advanced Biomedical Research, 8, 71.
81. Ross, K., et al. (2024). Dietary patterns and gut microbiota diversity in health and disease. Nutrition Reviews, 82(3), 243–259.
82. Ruigrok, R., et al. (2023). The gut-brain metabolic axis in appetite regulation. Metabolic Brain Disease, 38(2), 417–432.
83. Ruigrok, R. A., Sandhu, H., & van der Meer, J. H. (2023). The intestinal microbiota in nutrient absorption and metabolic disease: Recent insights and clinical implications. Cellular and Molecular Gastroenterology and Hepatology, 15(2), 459–472. https://doi.org/10.1016/j.jcmgh.2022.12.006
84. Sankararaman, S., et al. (2022). Gut microbiota and obesity: Pathophysiological mechanisms and interventions. International Journal of Obesity, 46(3), 361–375.
85. Sanz, Y., Santacruz, A., & Gauffin, P. (2010). Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society, 69(3), 434–441.
86. Saxena, A., Kumar, R., & Singh, H. (2024). AI-driven personalized nutrition for gut microbiome modulation: Future of microbiome therapeutics. Trends in Biotechnology, 42(4), 350–364. https://doi.org/10.1016/j.tibtech.2023.11.002
87. Schoultz, I., et al. (2025). Microbiome development across the lifespan: Determinants and health outcomes. Microbial Ecology in Health & Disease, 36(1), 2254894.
88. Shahab, M., & Shahab, N. (2022). Functions of gut microbiota in human health: A review. Journal of Nutritional Biochemistry, 105, 108975.
89. Shen, Z., Zhu, C., & Zhang, Z. (2025). Gut dysbiosis and systemic diseases: Molecular insights and therapeutic targets. Journal of Translational Medicine, 23(1), 134. https://doi.org/10.1186/s12967-025-04412-z
90. Shi, N., et al. (2017). The role of gut microbiota in immune homeostasis. Clinical Reviews in Allergy & Immunology, 52(1), 90–101.
91. Shin, N. R., et al. (2023). Role of SCFAs in regulating gut inflammation. Cellular & Molecular Immunology, 20(3), 234–246.
92. Shoubridge, A. P., Walker, M. M., & Keely, S. (2022). Personalized medicine in gut microbiome research: Current landscape and future direction. Nature Reviews Gastroenterology & Hepatology, 19(7), 437–451. https://doi.org/10.1038/s41575-022-00621-w
93. Sitkin, S. I., Pokrotnieva, I. V., & Vasilyev, E. Y. (2018). Dysbiosis of the gut microbiota in inflammatory bowel disease and the prospects for correction. Terapevticheskii Arkhiv, 90(4), 113–121. https://doi.org/10.26442/00403660.2018.04.000327
94. Tan, Y., Zhou, L., & Wang, Y. (2021). Gut microbiota and neurodegenerative disorders: Dietary interventions and therapeutic opportunities. Neurochemistry International, 148, 105123. https://doi.org/10.1016/j.neuint.2021.105123
95. Trakman, G. L., et al. (2021). Diet, microbiome, and age: Interactions shaping gut health. Nutrition Reviews, 79(4), 416–431.
96. Vallianou, N. G., Stratigou, T., & Tsagarakis, S. (2019). Microbiome and obesity: Mechanisms and interventions. Diabetes & Metabolic Syndrome, 13(2), 800–806.
97. Wang, T., et al. (2024). Prebiotic modulation of gut microbiota and metabolic outcomes. Clinical Nutrition Journal, 43(1), 55–66.
98. Wang, X., et al. (2023). Impact of breastfeeding on gut microbiota development in infancy. Journal of Pediatric Nutrition, 16(2), 102–114.
99. Wang, Y., Kasper, L. H., & Turnbaugh, P. J. (2015). Understanding the human microbiome and its role in health and disease. Cell Host & Microbe, 17(5), 556–566. https://doi.org/10.1016/j.chom.2015.04.011
100. Wang, Y., et al. (2020). SCFAs in energy metabolism and lipid regulation. Molecular Nutrition & Food Research, 64(12), e2000086.
101. Wibowo, R., & Pramadhani, A. (2024). B vitamin synthesis by gut microbiota and its health implications. Indonesian Journal of Clinical Nutrition, 17(1), 10–19.
102. Winter, S. E., & Bäumler, A. A. J. (2023). Ecological disruption and microbial nutrient competition in gut dysbiosis. Nature Reviews Microbiology, 21(4), 208–222. https://doi.org/10.1038/s41579-022-00798-0
103. Wolter, M., Grant, E. T., & Silverman, N. J. (2021). Dietary strategies for autoimmune diseases: Modulating gut microbiota to improve health outcomes. Current Opinion in Clinical Nutrition and Metabolic Care, 24(5), 440–448. https://doi.org/10.1097/MCO.0000000000000769
104. Wu, T. R., et al. (2023). Gut microbiota and host nutrient metabolism interactions. Trends in Microbiology, 31(2), 112–125.
105. Xi, Y., Kong, F., & Wang, Y. (2024). The oral-gut axis: Implications for systemic diseases including Alzheimer’s and diabetes. Frontiers in Microbiology, 15, 1135923. https://doi.org/10.3389/fmicb.2024.1135923
106. Xiao, F., Tang, M., Zheng, X., Liu, Y., & Yang, Y. (2023). Altered gut microbiota and COVID-19 severity: Evidence from human cohorts. Gut Pathogens, 15, 21. https://doi.org/10.1186/s13099-023-00531-w
107. Xiong, N., Hu, Y., & Wang, J. (2015). The role of gut microbiota in Parkinson’s disease: Mechanisms and clinical implications. Brain, Behavior, and Immunity, 48, 1–8. https://doi.org/10.1016/j.bbi.2015.03.003
108. Yamamura, R., et al. (2019). SCFA-producing bacteria in health and disease. Japanese Journal of Gastroenterology, 116(2), 95–104.
109. Yang, J., et al. (2020). Impact of macronutrient intake on gut microbiota composition. Nutrition Research Reviews, 33(2), 175–186.
110. Yang, W., et al. (2022). Gut microbiota and cancer immunotherapy: Translational insights. Cancer Letters, 525, 104–112.
111. Yao, Y., et al. (2020). SCFAs in cardiovascular diseases. International Journal of Cardiology, 328, 130–137.
112. Yarahmadi, S., et al. (2024). Gut microbiota-targeted therapies in obesity and metabolic syndrome. Obesity Reviews, 25(1), e13503.
113. Young, V. B. (2012). The intestinal microbiota in health and disease. Current Opinion in Gastroenterology, 28(1), 63–69. https://doi.org/10.1097/MOG.0b013e32834d61e9
114. Yu, H., et al. (2024). Gut microbiota and host nutrient absorption: Pathways and applications. Clinical Nutrition Insights, 18(1), 1–12.
115. Yu, T., Zhu, C., Chen, W., Wang, X., & Xu, Z. (2024). Dietary modulation of the gut microbiome and its impact on metabolic health. Nutrients, 16(1), 112. https://doi.org/10.3390/nu16010112
116. Zhang, Y., et al. (2021). Nutrient metabolism and gut microbiota regulation. Metabolism Reviews, 70(1), 102134.
117. Zhang, Z., et al. (2025). Diet, microbiota, and immunity: A dynamic interaction. Immunology Today, 46(2), 89–101.
118. Zmora, N., Suez, J., & Elinav, E. (2018). You are what you eat: Diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 15(1), 33–44. https://doi.org/10.1038/nrgastro.2017.117
Published
Issue
Section
License
Copyright (c) 2025 Nanny Djaya, Irene Vanessa, Christina Jeanny (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.