The Role of Data Analytics in Optimizing Hospital Resource Allocation and Decision-making

Authors

  • Danny Pattirajawane Atma Jaya Hospital Author

DOI:

https://doi.org/10.30872/jtpc.vi.291

Keywords:

analytics, hospital, resource allocation, decision-making, ai

Abstract

Data analytics has emerged as a transformative force in optimizing hospital resource allocation and decision-making processes. The integration of advanced technologies such as artificial intelligence, machine learning, and the Internet of Things has significantly enhanced the efficiency and effectiveness of healthcare delivery systems. These technologies enable hospitals to leverage vast amounts of data for improved clinical support, resource allocation, and operational efficiency. The implementation of data analytics in healthcare has led to several key benefits, including improved patient outcomes, cost reduction, enhanced predictive analysis capabilities, and more efficient resource optimization. However, the adoption of data analytics in healthcare settings faces several challenges, such as issues related to data quality and standardization, privacy and security concerns, and resistance to change within organizational structures. Addressing these challenges requires a comprehensive approach involving technological advancements, policy reforms, and cultural shifts within healthcare institutions. Emerging trends in healthcare data analytics point towards increased integration of artificial intelligence and deep learning technologies, promising to further enhance predictive modeling capabilities, real-time analytics, and the incorporation of diverse data sources for more precise and efficient healthcare delivery. While data analytics offers immense potential for optimizing hospital resource allocation and decision-making, its successful implementation necessitates ongoing research, interdisciplinary collaboration, and the development of robust frameworks to address ethical and practical challenges.

Downloads

Download data is not yet available.

References

1. Abatal, R., Maamar, Z., Bourekkache, S., & Ouhbi, S. (2025). Hybrid predictive models for emergency department resource allocation. Journal of Healthcare Analytics, 12(1), 34–49.

2. Abidi, S. S. R., & Abidi, S. R. (2019). Artificial intelligence for health data analytics. Studies in Health Technology and Informatics, 264, 3–4. https://doi.org/10.3233/SHTI190002

3. Abidi, S. S. R., & Abidi, S. R. (2019). Intelligent health data analytics: A convergence of artificial intelligence and big data. Healthcare Management Forum, 32(4), 178–182. https://doi.org/10.1177/0840470419846134

4. Adeghe, A., Eze, G. O., & Musa, A. (2024). Ethical considerations in healthcare big data analytics: A framework for data quality and privacy. Journal of Health Informatics in Developing Countries, 18(1), 45–56.

5. Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2023). Research commentary—The digital transformation of healthcare: Current status and the road ahead. Information Systems Research, 34(1), 14–30.

6. Ahmad, S. (2023). Challenges in using social media geographic information for governance and decision-making. Journal of Information Policy, 13, 101–119.

7. Akindote, O., Okafor, C., & Ojo, A. (2023). Integrating GIS in healthcare analytics: Enhancing community health interventions. Journal of Health Informatics, 15(2), 45–59.

8. Akindote, O., Oyeniran, B., & Ejiro, T. (2023). Geographic information systems and spatial analytics in healthcare: A review of emerging trends. Journal of Geographic Health, 12(2), 89–102.

9. Al-Quraishi, T., Jamjoom, M., & Alzahrani, A. (2024). Personalized medicine in practice: Predictive analytics and AI integration in patient care. Journal of Personalized Health, 17(2), 99–113.

10. Allahham, A., Habbal, D., & Eid, M. (2023). Big data analytics for green supply chain management: Review and future research directions. Sustainability, 15(7), 5894.

11. Allahham, A., Osman, I. H., Al-Omoush, K. S., & Alzghoul, A. (2023). Big data analytics in healthcare supply chain management: A systematic review. Technological Forecasting and Social Change, 190, 122348.

12. Amarasingham, R., Patel, P. C., Toto, K., Nelson, L. L., Swanson, T. S., Moore, B. J., ... Halm, E. A. (2014). Allocating scarce resources in real time: Applying predictive analytics to high-risk patients. Journal of Hospital Medicine, 9(7), 415–421.

13. Amin, S. H., Shahab, S., & Mortezaei, M. (2024). Optimization techniques for operating room scheduling: A systematic review. Operations Research for Health Care, 41, 100357.

14. Apte, M., Palepu, A., & Shivdasani, A. (2011). Clinical data and its role in healthcare analytics: A hospital-based study. Indian Journal of Public Health Research & Development, 2(1), 12–17.

15. Arowoogun, A. O., Ojo, F., & Fagbola, T. M. (2024). Big data analytics in healthcare: Applications and integration challenges. Health Informatics Journal, 30(2), 112–125.

16. Arowoogun, E. O., Ajayi, A., & Fatokun, T. (2024). Challenges and prospects of data analytics in African healthcare systems. Health Systems and Informatics Journal, 6(1), 12–25.

17. Arowoogun, O., Johnson, R., & Omole, T. (2024). Artificial intelligence and real-time analytics in healthcare: Potentials and challenges. Health Data Science Review, 5(1), 33–49.

18. Arowoogun, O. T., Ojo, A., & Kiobel, B. (2024). Optimizing healthcare resource allocation through data-driven demographic and psychographic analysis. Computational Science and Information Technology Research Journal, 12(1), 34–49.

19. Ayaz, M., Mahmood, F., & Zikria, Y. B. (2023). FHIR and interoperability in modern healthcare: A systematic review. Journal of Medical Systems, 47(3), 215–229.

20. Babawarun, A., Chen, Y., & Wang, L. (2024). Addressing resource allocation challenges in rural healthcare settings. International Journal of Healthcare Management, 17(3), 210–225.

21. Basson, M. D., Butler, T. W., Verma, H., & Chang, D. C. (2006). Predicting patient no-shows for surgery with multivariable analysis. American Journal of Surgery, 191(5), 685–689.

22. Batko, K., & Ślęzak, A. (2022). The use of Big Data Analytics in healthcare. Journal of Big Data, 9(3), Article 3. https://doi.org/10.1186/s40537-021-00553-4

23. Bedoya-Valencia, L., & Kirac, E. (2016). Using simulation to improve emergency department resource allocation. Simulation in Healthcare, 11(1), 26–34.

24. Belle, A., Thiagarajan, R., Soroushmehr, S. M. R., Navidi, F., Beard, D. A., & Najarian, K. (2015). Big data analytics in healthcare. BioMed Research International, 2015, 1–16. https://doi.org/10.1155/2015/370194

25. Belle, A., Thiagarajan, R., Soroushmehr, S. M. R., Navidi, F., Beard, D. A., & Najarian, K. (2015). Big data analytics in healthcare. BioMed Research International, 2015, Article 370194. https://doi.org/10.1155/2015/370194

26. Belle, A., Thiagarajan, R., Soroushmehr, S. M. R., Navidi, F., Beard, D. A., & Najarian, K. (2015). Big data analytics in healthcare. BioMed Research International, 2015, 370194. https://doi.org/10.1155/2015/370194

27. Bellini, C., Russo, P., Conti, M., & Bianchi, S. (2024). Predictive analytics for hospital operations: Optimizing surgical resource allocation with AI. International Journal of Healthcare Analytics, 15(1), 22–38.

28. Benabdellah, A. C., Kassou, I., & Tkiouat, M. (2016). Big data analytics in supply chain management: Current status and future directions. Journal of Industrial Engineering and Management, 9(5), 933–957.

29. Benabdellah, A. C., Saidi, R., & Benslimane, S. M. (2016). Challenges of big data analytics in supply chain management: A review. International Journal of Supply Chain Management, 5(1), 16–24.

30. Bertino, E., & Ferrari, E. (2017). Big data security and privacy. IEEE Transactions on Dependable and Secure Computing, 14(6), 673–676.

31. Bittencourt, R. J., Steffen, R. E., & Hauser, L. (2018). Hospital bed management: An analysis using queuing theory. BMC Health Services Research, 18(1), 1–9.

32. Bottle, A., Aylin, P., & Bell, D. (2006). Predicting emergency admissions: A cross-sectional study of emergency admissions in England. BMJ Open, 336(7650), 429–431.

33. Brandy, J. (2023). Technological infrastructure and healthcare analytics adoption in low-resource settings. Global Health Technology Review, 11(3), 105–117.

34. Chen, A. Y., McCullough, J. S., & Rathore, S. S. (2014). Inequity in healthcare resource distribution in rural vs. urban settings: A policy perspective. Health Affairs, 33(4), 623–631.

35. Chen, W., & Wang, Y. (2016). Multi-objective simulation optimization for emergency resource allocation. Simulation Modelling Practice and Theory, 68, 92–103.

36. Chen, Y., & Wang, L. (2016). Managing emergency department overcrowding through resource allocation: A simulation study. Health Systems, 5(1), 23–36.

37. Chen, Y., Wang, L., & Zhang, X. (2014). Healthcare resource allocation in rural areas: Challenges and strategies. Rural Health Journal, 10(2), 89–102.

38. Chen, Y., Zhang, J., & Li, M. (2021). Managing drug shortages in hospitals: Challenges and solutions. BMC Health Services Research, 21, 881.

39. Cho, J., Lee, H. E., & Lee, J. Y. (2021). Data quality issues in wearable device research. JMIR mHealth and uHealth, 9(3), e23555.

40. Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868–1889.

41. Codella, J., Szolovits, P., & Kohane, I. (2018). Challenges in person-generated health data integration. Journal of the American Medical Informatics Association, 25(12), 1581–1587.

42. Cohen, A. M., Chamberlin, S. E., Deloughery, T. G., Nguyen, M., Bedrick, S., & McDonagh, M. S. (2015). Detecting and interpreting data in clinical data warehouses. Journal of Biomedical Informatics, 55, 186–194.

43. Cudney, E. A., Elrod, C. C., & Ahrens, D. (2016). Using discrete event simulation to optimize hospital bed management. Journal of Healthcare Engineering, 7(4), 719–732.

44. D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., & Blanc, G. (2015). Privacy by design in big data. Computer Law & Security Review, 31(5), 584–598.

45. Davis, D. P., Poste, J. C., Hicks, T., Polk, D., Rymer, T. E., & Velky, T. (2005). Hospital bed surge capacity in mass-casualty incidents. Annals of Emergency Medicine, 46(6), 580–586.

46. Dixon, B. E., Grannis, S. J., & Vest, J. R. (2024). Ethics, equity, and effectiveness in predictive analytics for population health. Journal of Biomedical Informatics, 150, 104015.

47. Durán, A., Gourgoulias, A., & Kapidakis, S. (2016). Improving operating room utilization through prioritization and scheduling algorithms. Health Systems, 5(3), 193–205.

48. Eddie, A. (2023). Advancements in big data analytics for patient satisfaction and outcomes. Healthcare Technology Today, 8(4), 112–119.

49. Elgin, B., & Elgin, R. (2024). Ethical considerations in AI-driven clinical decision support systems. Journal of Medical Ethics and Technology, 12(1), 56–68.

50. Endrullat, C., Glökler, J., Franke, P., & Fuchs, S. (2016). Standardization and quality management in next-generation sequencing. In Methods in Molecular Biology (Vol. 1392, pp. 81–94).

51. Fairley, M., Scheinker, D., & Brandeau, M. (2018). Improving operating room scheduling using machine learning and optimization. Health Care Management Science, 21(4), 509–520.

52. Feng, Q., Qin, H., & Zhuang, Y. (2015). Modeling and optimization of emergency department operations: A review. Computers & Industrial Engineering, 85, 195–204.

53. Feng, Q., Zhang, Y., & Li, H. (2015). Optimizing hospital resource allocation using mixed-integer linear programming. Operations Research in Healthcare, 7(3), 145–158.

54. Feng, Y., Fan, Y., & Liu, G. (2015). Multi-objective simulation optimization for emergency department resource allocation. Computers & Industrial Engineering, 83, 1–12.

55. Galetsi, P., & Katsaliaki, K. (2019). Big data analytics in health: An overview of the literature. Health Information Science and Systems, 7, 21. https://doi.org/10.1007/s13755-019-0070-0

56. Gavrielov-Yusim, N., & Friger, M. (2013). Use of administrative medical databases in population-based research. Israel Medical Association Journal, 15(11), 671–677.

57. Ghalehkhondabi, I., Ardjmand, E., & Weckman, G. R. (2020). A survey on big data analytics in supply chain management: Applications and challenges. Operations Research Perspectives, 7, 100153.

58. Ghalehkhondabi, I., Ardjmand, E., & Weidman, J. (2020). Applications of big data analytics in supply chain management: A literature review. Journal of Business Logistics, 41(2), 125–139.

59. Gomez, F. (2024). Transitioning to value-based care through data analytics. Healthcare Analytics Review, 9(2), 75–88.

60. Graham, B., MacKenzie, T., & Roberts, K. (2018). Predicting hospital admissions using routine data and machine learning. BMC Medical Informatics and Decision Making, 18, 45.

61. Granelli, F., Kountouris, M., & Stotas, S. (2010). Standardization for cognitive and dynamic spectrum access networks. IEEE Communications Magazine, 48(9), 71–79.

62. Hamilton, A., Tan, Z., & Kim, S. (2021). Predictive healthcare analytics: Forecasting patient needs with AI. Healthcare Management Science, 24(2), 231–245.

63. Handayani, P. W., Hidayanto, A. N., & Pinem, A. A. (2023). Blockchain-based healthcare system: Opportunities and challenges. Health Information Science and Systems, 11, 1–11.

64. Harbi, S., Elrayah, A., & Ahmed, M. (2024). Evaluating the effectiveness of case management programs in hospital settings. Healthcare Management Review, 49(2), 108–117.

65. Hernandez, J., & Zhang, K. (2017). Wearables and EHR integration: Unlocking predictive power for patient care. IEEE Journal of Biomedical and Health Informatics, 21(6), 1585–1591.

66. Hulsen, T. (2023). Explainable artificial intelligence (XAI) in healthcare: A critical review. BMC Medical Informatics and Decision Making, 23, 27. https://doi.org/10.1186/s12911-023-02100-5

67. Hulshof, P. J. H., Kortbeek, N., Boucherie, R. J., Hans, E. W., & Bakker, P. J. M. (2013). Tactical resource allocation and elective patient admission planning in care processes. Health Care Management Science, 16(2), 152–166. https://doi.org/10.1007/s10729-012-9214-z

68. Iadanza, E., Dori, F., & Frosini, N. (2019). Evidence-based maintenance for hospital equipment. Health Technology Management, 2(1), 22–33.

69. Ibeh, C., Alhassan, Y., & Otieno, M. (2024). Patient-centric care enabled by data analytics and wearable technologies. Digital Health, 10, 1–13.

70. Ibeh, E. J., Ezenwoye, M. A., & Chikere, U. (2024). Leveraging data analytics for emergency response in healthcare. Journal of Emergency Healthcare Systems, 9(1), 60–74.

71. Idris, S., Hussain, H., & Khan, A. (2024). The impact of telehealth data on chronic disease management: A case study on hypertension. Journal of Telemedicine and Telecare, 30(1), 15–25.

72. Islam, M. M. (2024). Big data and AI in modern healthcare: Challenges and opportunities. Journal of Digital Health Innovation, 8(1), 14–29.

73. Jangra, A., & Gupta, S. (2018). Real-time IoT-based healthcare monitoring system using biosensors. International Journal of Advanced Research in Computer and Communication Engineering, 7(6), 146–152.

74. Keerthika, M., Rajendran, R., & Latha, S. (2023). Evolution of data analytics in healthcare: Past, present and future. International Journal of Health Sciences, 17(1), 88–97.

75. Keerthika, R., Mohan, R., & Deepa, R. (2023). A review of AI and big data integration in personalized healthcare. Journal of Computational Medicine and Health Informatics, 10(2), 75–88.

76. Keerthika, S., Ramesh, K., & Priya, D. (2023). Medical data analytics: Roles, challenges, and analytical tools. In Advances in Healthcare Information Systems (pp. 45–67). IGI Global.

77. Khirekar, A., Deshmukh, S., & Kulkarni, V. (2023). Resource allocation during healthcare disasters: A review. Disaster Medicine and Public Health Preparedness, 17, e27.

78. Khirekar, P., Singh, R., & Patel, K. (2023). Strategic partnerships and disaster preparedness in hospital resource management. International Journal of Emergency Management, 11(1), 33–47.

79. Kiu, Y. L., & Chan, W. H. (2023). Understanding resistance to healthcare data analytics: Organizational and behavioral factors. International Journal of Health Services Research, 13(2), 132–147.

80. Koonin, L. M., Pillai, S. K., & Biedrzycki, P. (2020). Strategies for ventilator stockpile allocation in a pandemic. Health Security, 18(5), 431–438.

81. Kumar, A., Singh, M., & Taneja, P. (2022). Proportionate data analytics in IoT-enabled healthcare systems. Journal of Healthcare Engineering, 2022, 8159637. https://doi.org/10.1155/2022/8159637

82. Lee, J., Hwang, H., & Park, Y. (2020). Predictive analytics in healthcare: Integration with clinical workflows. Healthcare Informatics Research, 26(2), 142–149.

83. Lee, Y., & Mangalaraj, G. (2022). Big data analytics and supply chain performance: Empirical evidence from global manufacturing. Journal of Operations Management, 68(2), 134–149.

84. Li, Y., Wang, D., & Yu, H. (2024). Convex resource allocation in group scheduling using machine learning. Journal of Scheduling, 27, 50–67.

85. Lin, Y., Hu, Z., & Zhang, X. (2017). Bayesian multitask learning for predictive healthcare analytics. IEEE Transactions on Neural Networks and Learning Systems, 28(3), 611–624.

86. Lin, Y. K., & Chou, C. H. (2019). A hybrid genetic algorithm for optimizing operating room schedules. Journal of the Operational Research Society, 70(6), 925–938.

87. Lin, Y. K., & Li, H. (2021). An artificial bee colony algorithm for operating room scheduling problems. Computers & Industrial Engineering, 152, 107037.

88. Liu, C., Zhang, D. Z., & Xu, M. (2020). Sustainable supply chain management through big data analytics. International Journal of Production Economics, 229, 107776.

89. Liu, M. (2020). Data quality challenges in financial and business research. Data and Information Quality, 2(3), 1–17.

90. Lytras, M. D., Visvizi, A., & Sarirete, A. (2019). Wearables, IoT and personalized healthcare: Insights from a bibliometric analysis. Technological Forecasting and Social Change, 146, 755–760.

91. Mostafa, R., & El-Atawi, A. (2024). Enhancing emergency care through telemedicine and triage protocols. Telemedicine and e-Health, 30(1), 25–33.

92. Muneeswaran, K., Kumar, S., & Rajesh, M. (2021). Enhancing healthcare systems through data analytics. Journal of Healthcare Engineering, 2021, Article 8891234. https://doi.org/10.1155/2021/8891234

93. Nguyen, T., Le, H., & Phan, H. (2024). Real-world data applications in epidemiological studies: A framework for healthcare research. International Journal of Environmental Research and Public Health, 21(2), 198.

94. Nwaimo, D., Uchenna, M., & Edet, H. (2024). Predictive modeling in healthcare: Leveraging EHRs and wearables for personalized medicine. Journal of Medical Systems and Technology, 19(1), 58–73.

95. Obaid, O., & Salman, A. (2022). Securing IoT healthcare systems using blockchain. IEEE Internet of Things Journal, 9(15), 12862–12870.

96. Obijuru, I., Asagba, P., & Musa, T. (2024). Ethical and legal frameworks for big data analytics in healthcare. Journal of Health Ethics and Law, 6(1), 43–58.

97. Obiuto, M., Li, Q., & Zhang, L. (2024). AI applications in construction management: Predictive analytics for scheduling. Automation in Construction, 158, 104075.

98. Ojo, A., & Kiobel, B. (2024). Business analytics in healthcare: Streamlining operations and personalized care. Healthcare Business Review, 14(2), 98–110.

99. Ojo, F., & Kiobel, M. (2024). Organizational resistance to digital transformation in hospitals: The case of data analytics adoption. Health Policy and Technology, 13(1), 31–45.

100. Olson, J. (2023). Big data challenges in healthcare: Integration and quality management. Journal of Healthcare Management Analytics, 12(1), 7–16.

101. Olson, J. (2023). Integrating diverse data sources for comprehensive patient insights. Journal of Health Data Science, 5(3), 120–134.

102. Omotunde, A., & Mouhamed, A. (2023). Artificial intelligence in EMR management and resource optimization. Journal of Digital Health Systems, 7(4), 199–213.

103. Oncioiu, I., Petrescu, A. G., & Petrescu, M. (2019). Enhancing supply chain performance with big data analytics. Sustainability, 11(12), 3224.

104. Oncioiu, I., Petrescu, M., & Petrescu, A. G. (2019). The role of cloud computing in improving supply chain performance. Sustainability, 11(16), 4482.

105. Oostrum, J. M. van, Bredenhoff, E., & Hans, E. W. (2009). Master surgical scheduling for operating room planning. Health Care Management Science, 12(3), 294–304.

106. Pines, J. M., Asplin, B. R., Kaji, A. H., Lowe, R. A., Magid, D. J., Raven, M., ... Schuur, J. D. (2013). Frequent users of emergency department services: Gaps in knowledge and a proposed research agenda. Academic Emergency Medicine, 20(12), 1099–1107.

107. Poon, E. G., Jha, A. K., Christino, M., Honour, M. M., Fernandopulle, R., Middleton, B., ... Bates, D. W. (2004). Assessing the level of healthcare IT adoption in the United States: A snapshot. BMC Medical Informatics and Decision Making, 4(1), 1–9. https://doi.org/10.1186/1472-6947-4-1

108. Ramírez, R. (2024). AI-driven decision support in preventive healthcare. Journal of Artificial Intelligence in Medicine, 69, 55–64.

109. Raman, R., Patwa, N., & Niranjan, I. (2018). Big data analytics in supply chain: A review. Operations and Supply Chain Management, 11(2), 73–85.

110. Rana, A., & Shuford, E. (2024). Ethical implications of AI in healthcare predictive systems. Health Ethics and Informatics Journal, 10(1), 19–33.

111. Rana, S., & Shuford, D. (2024). Predictive analytics and AI in clinical decision-making. Journal of Medical Systems, 48(1), Article 12. https://doi.org/10.1007/s10916-023-01987-5

112. Rao, A., Patel, S., & Mehta, K. (2024). IoT in smart healthcare: Opportunities, challenges, and the path forward. Journal of Internet of Medical Things, 6(2), 48–62.

113. Reddy, A. R., & Kumar, P. S. (2016, February). Predictive big data analytics in healthcare. In 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT) (pp. 623–626). IEEE. https://doi.org/10.1109/CICT.2016.157

114. Rehman, M. H., Chang, V., Batool, A., & Wah, T. Y. (2021). Big data analytics in healthcare: A systematic review. Journal of Biomedical Informatics, 113, Article 103655. https://doi.org/10.1016/j.jbi.2020.103655

115. Rüping, S. (2015). Healthcare analytics using open data sources: New trends and challenges. Data Science Journal, 14, 1–11. https://doi.org/10.5334/dsj-2015-008

116. Sahara, M. A., & Aamer, M. (2021). Enhancing decision-making in clinical settings through real-time data integration. International Journal of Medical Informatics, 155, 104590. https://doi.org/10.1016/j.ijmedinf.2021.104590

117. Scott, I. A. (2010). Public hospital bed crisis: Too few or too misused? Australian Health Review, 34(3), 317–324.

118. Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics and supply chain performance. Computers & Industrial Engineering, 137, 106024.

119. Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics in supply chain: A review. Annals of Operations Research, 293, 1201–1240.

120. Shah, A., Chircu, A., & Martinez, A. (2019). Data quality challenges in healthcare: A review and research agenda. Health Information Science and Systems, 7(1), 23.

121. Solfa, E., & Simonato, L. (2023). Ethical implications of AI in healthcare decision-making. AI & Society, 38(4), 1229–1242.

122. Song, Y., Lee, M., & Lee, J. (2018). Impact of off-service placement on hospital performance metrics. Journal of Hospital Administration, 7(2), 31–38.

123. Sousa, M. J., Martins, J. M., & Ferreira, C. A. (2019). Big data in healthcare: Challenges and opportunities. Journal of Medical Systems, 43(9), 1–8.

124. Sousa, R. D., Silva, M. J., & Fernandes, J. M. (2019). Real-time and predictive analytics in healthcare: Enhancing efficiency across the value chain. Health Informatics Journal, 25(3), 567–580. https://doi.org/10.1177/1460458217735675

125. Sun, Y., Chen, Z., & Wang, J. (2023). Evaluating the impact of China’s healthcare reform on resource allocation: A panel data analysis. Health Policy and Planning, 38(1), 105–117.

126. Syed, A. A., Khan, R., & Bhatti, Z. A. (2022). Cybertwin-enabled 6G healthcare networks. IEEE Access, 10, 55532–55545.

127. Talaat, M. (2022). EPRAM: A fog computing-based methodology for efficient resource allocation in healthcare. Journal of Computational Intelligence in Healthcare, 3(1), 90–106.

128. Uslu, B., Arslan, B., & Gokturk, M. (2020). Internet of Things in smart hospitals: Architecture and applications. Healthcare Technology Letters, 7(5), 122–130. https://doi.org/10.1049/htl.2020.0016

129. Wang, J., & Wang, X. (2023). Adaptive resource allocation using stochastic timed Petri nets in emergency departments. Journal of Medical Systems, 47(1), 4.

130. Wang, L., & Alexander, C. A. (2019). Big data analytics in healthcare systems. International Journal of Mathematical, Engineering and Management Sciences, 4(1), 17–26. https://doi.org/10.33889/IJMEMS.2019.4.1-002

131. Wang, L., & Alexander, C. A. (2020). Big data analytics in medical engineering and healthcare: Methods, advances, and challenges. Journal of Healthcare Engineering, 2020, Article 8891235. https://doi.org/10.1155/2020/8891235

132. Wang, Y., & Alexander, C. A. (2020). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 8(1), 7. https://doi.org/10.1007/s13755-020-00104-1

133. Wei, Y., Chen, Z., & Zhang, X. (2024). Equity in healthcare resource allocation in Chongqing, China. International Journal for Equity in Health, 23(1), 1–12.

134. Wills, M. J. (2014). Decision support systems: Advances in healthcare. Health Systems, 3(1), 26–33.

135. Xiang, X. (2017). Ant colony optimization for multi-objective surgical scheduling. Journal of Scheduling, 20(1), 61–74.

136. Yang, S., Zhou, Y., & Zhu, X. (2018). Machine learning for large-scale resource scheduling: A review. IEEE Access, 6, 54546–54562.

137. Yinusa, O., & Faezipour, M. (2023). Resource allocation in healthcare: Optimization strategies and challenges. Journal of Healthcare Operations Management, 9(2), 101–115.

138. Yinusa, S., & Faezipour, M. (2023). Workforce scheduling optimization in healthcare: A review. Operations Research for Health Care, 36, 100332.

139. Yoshida, H., Murayama, H., & Takahashi, M. (2022). Electronic medical records and prescription databases in Japan: Utilization and integration. Journal of Medical Systems, 46, 103.

140. Zaabi, A., & Alhashmi, A. (2024). Challenges and solutions in healthcare data privacy. International Journal of Information Security and Privacy, 18(1), 23–39.

141. Zhang, G., Zhang, W., & Yu, L. (2020). Mechanism design for medical surplus recovery organizations. Health Care Management Science, 23(4), 638–653.

142. Zhang, K., Lu, W., & Chen, X. (2024). Multi-objective scheduling in healthcare using evolutionary algorithms and machine learning. Applied Soft Computing, 140, 110831.

143. Zhang, L., Wu, Y., & Li, X. (2024). Multi-agent emergency resource allocation based on domain transportation theory. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(3), 421–432.

144. Zhou, Y., Wang, F., & Liu, C. (2019). Deep learning in medical imaging: A review. Current Medical Imaging Reviews, 15(1), 5–15. https://doi.org/10.2174/1573405614666181114120412

145. Zhu, Y., Wang, H., & Xu, Y. (2020). Cybersecurity in big data healthcare: Challenges and solutions. Journal of Cybersecurity and Privacy, 2(1), 18–37.

Downloads

Published

2025-10-22

How to Cite

The Role of Data Analytics in Optimizing Hospital Resource Allocation and Decision-making. (2025). Journal of Tropical Pharmacy and Chemistry , 75-100. https://doi.org/10.30872/jtpc.vi.291

Similar Articles

21-30 of 133

You may also start an advanced similarity search for this article.