A Comparative Review of Modern Pharmacy and Jamu through the Djampi Oesodo Triad Philosophy
DOI:
https://doi.org/10.30872/jtpc.v9i2.312Keywords:
jamu, pharmacy, djampi oesodo, kesadaran, energi, materiAbstract
Modern pharmaceutical science is predominantly grounded in a reductionist paradigm in which therapeutic efficacy is explained by the interaction of chemical matter with biological targets, governed by binding free energy and conformational dynamics at the molecular level. While this approach has achieved remarkable success in drug discovery and precision medicine, it often provides an incomplete account of clinical outcomes in complex, chronic, and psychosomatic conditions where context, expectation, and systemic regulation play decisive roles. In contrast, the Indonesian Jamu tradition conceptualized here through the framework of Jamulogi and the ancestral philosophy of Djampi Oesodo approaches healing as an integrated process involving kesadaran (consciousness), energi (biophysical and embodied regulation), and materi (biochemical substances derived from plants, animals, and minerals).
This narrative integrative review compares modern pharmacy and Jamu as two distinct yet potentially complementary therapeutic paradigms. The analysis synthesizes evidence from molecular pharmacology, structural biology, placebo–nocebo neuroscience, systems and network pharmacology, ethnomedicine, archaeology, and environmental health. Modern pharmaceutical efficacy is examined through the lens of binding free energy (ΔG_bind) and protein–ligand conformational landscapes, while Jamu is analysed as a multi-component, multi-target system whose effects are modulated by consciousness-mediated expectation, ritualized therapeutic context, embodied techniques, and ecological continuity. Neuroscientific evidence demonstrates that expectation and belief can modulate endogenous opioidergic, neuroendocrine, autonomic, and immune pathways, providing biological validation for the therapeutic role of consciousness emphasized in Djampi Oesodo. Concurrently, systems pharmacology and natural product research support the plausibility of Jamu’s material domain as a network-level pharmacological intervention.
The review argues that the apparent dichotomy between pharmacy and Jamu reflects differences in explanatory level rather than scientific incompatibility. By framing molecular binding energetics and systemic state regulation as complementary layers of therapeutic causality, Jamulogi emerges as a culturally grounded and scientifically plausible integrative health science. This framework offers a coherent foundation for future research in ethnopharmacology, systems biology, integrative clinical trial design, and sustainable phytopharmaceutical innovation within Indonesia and beyond.
Downloads
References
1. Ahn, A. C., Tewari, M., Poon, C. S., & Phillips, R. S. (2006). The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Medicine, 3(6), e208. https://doi.org/10.1371/journal.pmed.0030208
2. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
3. Baptista, F. I., Henriques, A. G., Silva, A. M. S., Wiltfang, J., & da Cruz e Silva, O. A. B. (2014). Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chemical Neuroscience, 5(2), 83–92. https://doi.org/10.1021/cn400213r
4. Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A., & Maggi, G. (1997). Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain, 71(2), 135–140. https://doi.org/10.1016/S0304-3959(97)03346-0
5. Benkovic, S. J., & Hammes-Schiffer, S. (2003). A perspective on enzyme catalysis. Science, 301(5637), 1196–1202. https://doi.org/10.1126/science.1085515
6. Berkes, F., Colding, J., & Folke, C. (2000). Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications, 10(5), 1251–1262. https://doi.org/10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2
7. Boehr, D. D., Nussinov, R., & Wright, P. E. (2009). The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 5(11), 789–796. https://doi.org/10.1038/nchembio.232
8. Cahyaningsih, R., Phillips, J., Magos Brehm, J., & Maxted, N. (2021). Setting the priority medicinal plants for conservation in Indonesia. Genetic Resources and Crop Evolution, 68, 2019–2037. https://doi.org/10.1007/s10722-021-01115-6
9. Changeux, J.-P., & Edelstein, S. J. (2011). Conformational selection or induced fit? 50 years of debate resolved. F1000 Biology Reports, 3, 19. https://doi.org/10.3410/B3-19
10. Chen, S.-L., Yu, H., Luo, H.-M., Wu, Q., Li, C.-F., & Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chinese Medicine, 11, 37. https://doi.org/10.1186/s13020-016-0108-7
11. Chu, W. T., Wang, J., & Chu, X. (2018). Quantifying the intrinsic conformational energy landscape of proteins with large-scale open–closed transitions. ACS Central Science, 4(7), 841–853. https://doi.org/10.1021/acscentsci.8b00274
12. Colloca, L., & Benedetti, F. (2005). Placebos and painkillers: Is mind as real as matter? Nature Reviews Neuroscience, 6(7), 545–552. https://doi.org/10.1038/nrn1705
13. Cournia, Z., Allen, B., & Sherman, W. (2017). Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. Journal of Chemical Information and Modeling, 57(12), 2911–2937. https://doi.org/10.1021/acs.jcim.7b00564
14. Doshi, P., Dickersin, K., Healy, D., Vedula, S. S., & Jefferson, T. (2012). Restoring invisible and abandoned trials: A call for people to publish the findings. PLoS Medicine, 9(12), e1001364. https://doi.org/10.1371/journal.pmed.1001364
15. Eippert, F., Bingel, U., Schoell, E., Yacubian, J., Klinger, R., Lorenz, J., & Büchel, C. (2009). Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron, 63(4), 533–543. https://doi.org/10.1016/j.neuron.2009.07.014
16. Elfahmi, Woerdenbag, H. J., & Kayser, O. (2014). Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. Journal of Herbal Medicine, 4(2), 51–73. https://doi.org/10.1016/j.hermed.2014.01.002
17. Fan, Y., et al. (2025). The multi-pathway treatment potential of flavonoids in neurological diseases. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2025.1690170
18. Gilson, M. K., Given, J. A., Bush, B. L., & McCammon, J. A. (1997). The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophysical Journal, 72(3), 1047–1069. https://doi.org/10.1016/S0006-3495(97)78756-3
19. Gracely, R. H., Dubner, R., & Deeter, W. R. (1983). Placebo and naloxone can alter post-surgical pain by different mechanisms. Nature, 306, 264–265. https://doi.org/10.1038/306264a0
20. Harpole, T. J., Delemotte, L., & Weinstein, H. (2018). Conformational landscapes of membrane proteins: A review. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(4), 909–926. https://doi.org/10.1016/j.bbamem.2017.10.012
21. Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690. https://doi.org/10.1038/nchembio.118
22. Jorgensen, W. L., & Ravimohan, C. (1985). Monte Carlo simulation of differences in free energies of hydration. The Journal of Chemical Physics, 83(6), 3050–3054. https://doi.org/10.1063/1.449866
23. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750
24. Levine, J. D., Gordon, N. C., & Fields, H. L. (1978). The mechanism of placebo analgesia. The Lancet, 312(8091), 654–657. https://doi.org/10.1016/S0140-6736(78)92762-9
25. Li, X., et al. (2023). Network pharmacology approaches for research of Traditional Chinese Medicines: Recent progress and prospects. Chinese Journal of Natural Medicines. https://doi.org/10.1016/S1875-5364(23)60429-7
26. Lorite, J. (2024). Overharvesting is a leading conservation issue of medicinal plants: A literature review. Diversity, 16(12), 744. https://doi.org/10.3390/d16120744
27. Michel, J., Tirado-Rives, J., & Jorgensen, W. L. (2008). Hit identification and binding mode predictions by rigorous free energy simulations. Journal of Medicinal Chemistry, 51(16), 4975–4982. https://doi.org/10.1021/jm800524s
28. Mobley, D. L., & Gilson, M. K. (2017). Predicting binding free energies: Frontiers and benchmarks. Annual Review of Biophysics, 46, 531–558. https://doi.org/10.1146/annurev-biophys-070816-033654
29. Mobley, D. L., & Klimovich, P. V. (2012). Perspective: Alchemical free energy calculations for drug discovery. The Journal of Chemical Physics, 137(23), 230901. https://doi.org/10.1063/1.4769292
30. Morando, M., et al. (2016). Promoting the integration of herbal medicine into evidence-based clinical practice. BMC Complementary and Alternative Medicine, 16, 396. https://doi.org/10.1186/s12906-016-1370-9
31. Muegge, I., & Hu, Y. (2023). Recent advances in alchemical binding free energy calculations for drug discovery. ACS Medicinal Chemistry Letters, 14(2), 139–146. https://doi.org/10.1021/acsmedchemlett.2c00541
32. Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
33. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
34. Norn, C., Wicky, B. I. M., Juergens, D., Liu, S., Kim, D., Tischer, D., Koepnick, B., & Baker, D. (2021). Protein sequence design by conformational landscape optimization. Proceedings of the National Academy of Sciences, 118(11), e2017228118. https://doi.org/10.1073/pnas.2017228118
35. Patwardhan, B. (2014). Bridging Ayurveda with evidence-based scientific approaches in medicine. EPMA Journal, 5(1), 19. https://doi.org/10.1186/1878-5085-5-19
36. Santiko, H. (2016). Identification of Karmawibhangga reliefs at Candi Borobudur. AMERTA, 34(2), 129–138. https://doi.org/10.24832/amt.v34i2.179
37. Shirts, M. R., & Chodera, J. D. (2008). Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics, 129(12), 124105. https://doi.org/10.1063/1.2978177
38. Siebenmorgen, T., & Zacharias, M. (2020). Computational prediction of protein–protein binding affinities. WIREs Computational Molecular Science, 10(2), e1448. https://doi.org/10.1002/wcms.1448
39. Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., Kosslyn, S. M., Rose, R. M., & Cohen, J. D. (2004). Placebo-induced changes in fMRI in the anticipation and experience of pain. Science, 303(5661), 1162–1167. https://doi.org/10.1126/science.1093065
40. Wang, B., et al. (2022). Systems pharmacology-based drug discovery and active ingredient identification of flavonoids. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fajar Prasetya, Lusy Noviani, Hadi Kuncoro, Niken Indriyanti, Daniel Tjen, Jaya Suprana (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

