Effect of Solvent Polarity and Protein Models on Anti-Inflammatory Properties of Kratom (Mitragyna speciosa) Leaf Extract
DOI:
https://doi.org/10.30872/jtpc.v9i2.302Keywords:
Kratom extract, protein denaturation, anti-inflammatory activity, solvent polarityAbstract
Protein denaturation plays an important role in the inflammatory process, and inhibition of this mechanism is widely used as an indicator of anti-inflammatory potential in vitro. This study aimed to investigates the effect of solvent polarity and protein models on the anti-inflammatory activity of Mitragyna speciosa (kratom) leaf extract using albumin denaturation assays with egg albumin and bovine serum albumin (BSA). Extracts were prepared using solvents of different polarities—n-hexane (non-polar), ethyl acetate (semi-polar), and ethanol (polar)—and tested at concentrations of 200, 500, and 1000 ppm. The results showed that solvent polarity and assay model strongly influenced inhibitory activity. In the egg albumin model, the highest inhibition was observed in the ethyl acetate extract at 1000 ppm (45.35%) with an IC₅₀ of 1232.5 ppm, followed by n-hexane extract (IC₅₀ = 1966.7 ppm). Ethanol extract exhibited comparatively lower inhibition (maximum 27.84%; IC₅₀ = 2214.7 ppm). Sodium diclofenac, used as a positive control, demonstrated potent activity with an IC₅₀ of 249.3 ppm. In the BSA model, overall inhibition values increased across all extracts, with n-hexane and ethanolic extracts showing enhanced activity, reaching 75.10% and 73.94% inhibition at 1000 ppm, respectively. Ethanol extract demonstrated the strongest activity in the BSA model (IC₅₀ = 281 ppm), indicating that polar constituents contribute substantially to protein-stabilizing effects. While, ethyl acetate extract displayed moderate inhibition with an IC₅₀ of 697.6 ppm. The study highlights the importance of solvent selection and assay model in evaluating the bioactivity of kratom leaf extracts. Overall, kratom extracts possess measurable in vitro anti-inflammatory potential, though none surpassed the standard drug. Further phytochemical identification and in vivo studies are recommended to validate these activities.
Downloads
References
[1] Cacciatore, S., Andaloro, S., Bernardi, M., Oterino Manzanas, A., Spadafora, L., Figliozzi, S., Asher, E., Rana, J. S., Ecarnot, F., Gragnano, F., Calabrò, P., Gallo, A., Andò, G., Manzo-Silberman, S., Roeters van Lennep, J., Tosato, M., Landi, F., Biondi-Zoccai, G., Marzetti, E., & Sabouret, P. (2025). Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management. International journal of molecular sciences, 26(7), 3071. https://doi.org/10.3390/ijms26073071
[2] Manabe I. (2011). Chronic inflammation links cardiovascular, metabolic and renal diseases. Circulation journal: official journal of the Japanese Circulation Society, 75(12), 2739–2748. https://doi.org/10.1253/circj.cj-11-1184
[3] Greenfield, E. A., DeCaprio, J., & Brahmandam, M. (2018). Making Weak Antigens Strong: Modifying Protein Antigens by Denaturation. Cold Spring Harbor protocols, 2018(5), 10.1101/pdb.prot099960. https://doi.org/10.1101/pdb.prot099960
[4] HDT, M. (2023). In vitro anti-inflammatory egg albumin denaturation assay: An enhanced approach. Journal of Natural & Ayurvedic Medicine, 7(3), 1-6.
[5] Banerjee, S., Chanda, A., Adhikari, A., Das, A., & Biswas, S. (2014). Evaluation of Phytochemical Screening and Anti-Inflammatory Activity of Leaves and Stem of Mikania scandens (L.) Wild. Annals of medical and health sciences research, 4(4), 532–536. https://doi.org/10.4103/2141-9248.139302
[6] Dathan, P., Nallaswamy, D., Rajeshkumar, S., Joseph, S., Shahin, I., & Tharani, M. (2025). In vitro evaluation of anti-inflammatory, anti-oxidant activity of pomegranate peel extract mediated calcium sulfate nano particles. The Medical journal of Malaysia, 80(Suppl 1), 44-51
[7] Begum, T., Arzmi, M. H., Khatib, A., Uddin, A. B. M. H., Aisyah Abdullah, M., Rullah, K., Mat So'ad, S. Z., Zulaikha Haspi, N. F., Nazira Sarian, M., Parveen, H., Mukhtar, S., & Ahmed, Q. U. (2025). A review on Mitragyna speciosa (Rubiaceae) as a prominent medicinal plant based on ethnobotany, phytochemistry and pharmacological activities. Natural product research, 39(6), 1636–1652. https://doi.org/10.1080/14786419.2024.2371564
[8] Ahmad, I., Prabowo, W. C., Arifuddin, M., Fadraersada, J., Indriyanti, N., Herman, H., Purwoko, R. Y., Nainu, F., Rahmadi, A., Paramita, S., Kuncoro, H., Mita, N., Narsa, A. C., Prasetya, F., Ibrahim, A., Rijai, L., Alam, G., Mun'im, A., & Dej-Adisai, S. (2022). Mitragyna Species as Pharmacological Agents: From Abuse to Promising Pharmaceutical Products. Life (Basel, Switzerland), 12(2), 193. https://doi.org/10.3390/life12020193a
[9] Sornsenee, P., Chimplee, S., & Romyasamit, C. (2025). Evaluation of Antibacterial, Antibiofilm, Antioxidant, and Anti-Inflammatory Activities of Kratom Leaves (Mitragyna speciosa) Fermentation Supernatant Containing Lactobacillus rhamnosus GG. Probiotics and antimicrobial proteins, 17(1), 328–340. https://doi.org/10.1007/s12602-023-10142-x
[10] Aziddin R.E, R., M.R, M., Z, M., & M.A, M. (2005). Anti-inflammatory Properties of Mitragyna Speciosa Extract. Malaysian Journal of Science, 24(1), 191–194. Retrieved from https://mjs.um.edu.my/index.php/MJS/article/view/8971
[11] Shaik Mossadeq, W. M., Sulaiman, M. R., Tengku Mohamad, T. A., Chiong, H. S., Zakaria, Z. A., Jabit, M. L., ... & Israf, D. A. (2009). Anti-inflammatory and antinociceptive effects of Mitragyna speciosa Korth methanolic extract. Medical Principles and Practice, 18(5), 378-384. https://doi.org/10.1159/000226292
[12] Utar, Z., Majid, M. I., Adenan, M. I., Jamil, M. F., & Lan, T. M. (2011). Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E₂ production induced by lipopolysaccharide in RAW264.7 macrophage cells. Journal of ethnopharmacology, 136(1), 75–82. https://doi.org/10.1016/j.jep.2011.04.011
[13] Rahmawati, S. I., Indriani, D. W., Ningsih, F. N., Hardhiyuna, M., Firdayani, F., Ahmadi, P., Rosyidah, A., Septiana, E., Dharmayanti, N. L. P. I., Bayu, A., & Putra, M. Y. (2024). Dual anti-inflammatory activities of COX-2/5-LOX driven by kratom alkaloid extracts in lipopolysaccharide-induced RAW 264.7 cells. Scientific reports, 14(1), 28993. https://doi.org/10.1038/s41598-024-79229-x
[14] Sun, S., Yu, Y., Jo, Y., Han, J. H., Xue, Y., Cho, M., Bae, S. J., Ryu, D., Park, W., Ha, K. T., & Zhuang, S. (2025). Impact of extraction techniques on phytochemical composition and bioactivity of natural product mixtures. Frontiers in pharmacology, 16, 1615338. https://doi.org/10.3389/fphar.2025.1615338
[15] Nargund, L. V., Redd, G. R., & Hariprasad, V. (1993). Inhibition of albumin denaturation and anti-inflammatory activity of acetamido [(phenyl-4'-yl)-oxymethyl)]2-(p-substituted phenylamino)-1,2,4-triazoles and -1,3,4-thiadiazoles. Indian journal of experimental biology, 31(4), 395–396.
[16] Ameena, M., Arumugham, M., Ramalingam, K., Rajeshkumar, S., & Shanmugam, R. (2023). Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus, 15(9).
[17] Czubinski, J., & Dwiecki, K. (2017). A review of methods used for investigation of protein–phenolic compound interactions. International Journal of Food Science and Technology, 52(3), 573-585.
[18] Liu, L. L., Yu, Y., & Su, K. N. (2023). Polyphenol-bovine serum albumin interaction and its influence on protein structure. Transactions of the Chinese Society of Agricultural Engineering, 39(13), 290-298.
[19] Xu, W., Ning, Y., Cao, S., Wu, G., Sun, H., Chai, L., ... & Luo, D. (2023). Insight into the interaction between tannin acid and bovine serum albumin from a spectroscopic and molecular docking perspective. RSC advances, 13(16), 10592-10599.
[20] Precupas, A., & Popa, V. T. (2024). Impact of Sinapic Acid on Bovine Serum Albumin Thermal Stability. International journal of molecular sciences, 25(2), 936. https://doi.org/10.3390/ijms25020936
[21] Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. Journal of agricultural and food chemistry, 53(1), 158–163. https://doi.org/10.1021/jf048693g
[22] Weijers, M., Barneveld, P. A., Cohen Stuart, M. A., & Visschers, R. W. (2003). Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics. Protein science : a publication of the Protein Society, 12(12), 2693–2703. https://doi.org/10.1110/ps.03242803
[23] Borzova, V. A., Markossian, K. A., Chebotareva, N. A., Kleymenov, S. Y., Poliansky, N. B., Muranov, K. O., Stein-Margolina, V. A., Shubin, V. V., Markov, D. I., & Kurganov, B. I. (2016). Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin. PloS one, 11(4), e0153495. https://doi.org/10.1371/journal.pone.0153495
[24] Albanese, D. C., & Gaggero, N. (2015). Albumin as a promiscuous biocatalyst in organic synthesis. RSC advances, 5(14), 10588-10598.
[25] Hsieh, S. R., Reddy, P. M., Chang, C. J., Kumar, A., Wu, W. C., & Lin, H. Y. (2016). Exploring the behavior of bovine serum albumin in response to changes in the chemical composition of responsive polymers: Experimental and simulation studies. Polymers, 8(6), 238. https://doi.org/10.3390/polym8060238
[26] Spector, A. A., John, K., & Fletcher, J. E. (1969). Binding of long-chain fatty acids to bovine serum albumin. Journal of lipid research, 10(1), 56–67.
[27] Trnková, L., Bousova, I., Kubicek, V., & Drsata, J. (2010). Binding of naturally occurring hydroxycinnamic acids to bovine serum albumin. Natural Science, 2(6), 563-570. http://dx.doi.org/10.4236/ns.2010.26071
[28] Rashedinia, M., Rasti Arbabi, Z., Sabet, R., Emami, L., Poustforoosh, A., & Sabahi, Z. (2023). Comparison of Protective Effects of Phenolic Acids on Protein Glycation of BSA Supported by In Vitro and Docking Studies. Biochemistry research international, 2023, 9984618. https://doi.org/10.1155/2023/9984618
[29] Rawar, E., Kristiyani, A., & Waruwu, I. S. (2023). Penetapan Kadar Flavonoid Total Dan Fenolik Total Serta Uji Penghambatan Denaturasi Protein Dalam Seduhan Teh Bunga Telang (Clitoria ternatea L.). Majalah Farmasi dan Farmakologi, 27(2), 47-51.
[30] Photchanachai, S., Mehta, A., & Kitabatake, N. (2002). Heating of an ovalbumin solution at neutral pH and high temperature. Bioscience, biotechnology, and biochemistry, 66(8), 1635–1640. https://doi.org/10.1271/bbb.66.1635
[31] Guha, S., & Mine, Y. (2019). Ovalbumin – an overview. In Encyclopedia of Food Chemistry. Elsevier. Retrieved from https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ovalbumin
[32] Kuang, J., Hamon, P., Lechevalier, V., & Saurel, R. (2023). Thermal behavior of pea and egg white protein mixtures. Foods, 12(13), 2528.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nurul Muhlisa Mus, Vitryani Tandi Sole, Fajar Prasetya (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

